

Meteorological Sensor Array (MSA) – Phase I

Volume 1 (“Proof of Concept” Overview)

by Gail Vaucher, Jeffrey Swanson, John Raby, Theresa Foley,
Sandra Harrison, Robert Brice, Sean D’Arcy, and Edward Creegan

ARL-TR-7058 September 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
White Sands Missile Range, NM 88002-5501

ARL-TR-7058 September 2014

Meteorological Sensor Array (MSA) – Phase I
Volume 1 (“Proof of Concept” Overview)

by Gail Vaucher, Jeffrey Swanson, John Raby, Theresa Foley,

Sandra Harrison, Robert Brice, Sean D’Arcy, and Edward Creegan
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

September 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 1, 2013–September 30, 2014
4. TITLE AND SUBTITLE

Meteorological Sensor Array (MSA) – Phase I, Volume 1 (“Proof of Concept”
Overview)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Gail Vaucher, Jeffrey Swanson, John Raby, Theresa Foley, Sandra Harrison,
Robert Brice, Sean D’Arcy, and Edward Creegan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Computational and Information Sciences Directorate
Battlefield Environment Division (ATTN: RDRL-CIE-D)
White Sands Missile Range, NM 88002-5501

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-7058

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

 12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The US Army Research Laboratory (ARL) is creating a Meteorological Sensor Array (MSA) to improve Army decisions by
strengthening environmentally-dependent decision aids through validated high-resolution atmospheric models in the boundary
layer to provide reliable and persistent data resources, which allow modelers and sensor developers to validate model and
sensor performance with atmospheric observations. This report outlines the multiphase MSA Development Plan, and
documents the MSA-Phase I (Proof of Concept). Phase I included a) 5 equally-spaced meteorological towers located around a
large Solar Photovoltaic Farm in southern NM; b) measurements of pressure, temperature (2 m/10 m), relative humidity
(2 m), insolation (2 m) and winds (2 m/10 m); c) solar-powered instrumentation; and d) wireless data download, monitoring,
and time synchronization. The MSA data processing included data merging, plotting and formatting for applications.
Automating data quality assurance was investigated. Model validation and verification (V&V) was one of several MSA-Phase I
data applications. The Weather Running Estimate-Nowcast (WRE-N) model was used to confirm the feasibility of Model V&V
with MSA data. Based on the success of Phase I, the authors look forward to future, fruitful phases.
15. SUBJECT TERMS

meteorological sensor array, MSA, model validation and verification, atmospheric sensors, data assurance, WRE-N, 3DWF

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
 OF PAGES

114

19a. NAME OF RESPONSIBLE PERSON
Gail Vaucher

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
(575) 678-3237

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vi

List of Tables vii

Acknowledgments ix

Executive Summary xi

1. Background 1

1.1 The Challenge ..1

1.2 Meteorological Sensor Array (MSA) Overview ...3
1.2.1 MSA Vision ..3
1.2.2 MSA Program Phases ...4

2. Sensor Calibration 5

2.1 Dynamic Sensor Calibration ...5

2.2 Thermodynamic Sensor Calibration ..6

3. Tower Design Description 8

4. Tower Data Acquisition Systems (DAS) 11

4.1 Thermodynamic (Logger) DAS ..12

4.2 Dynamic (Sonic) DAS ...13

5. Tower Power Design 13

6. Communications 14

7. Data Processing 15

8. Automated Quality Assurance Protocol 16

8.1 QA Limits ..17
8.1.1 Battery Voltage ...17
8.1.2 Panel Temperature ..17
8.1.3 Internal Quality Control ...18

iv

8.1.4 Climatological Average Values ..18
8.1.5 Air Temperature (2- and 10-m AGL) ...18
8.1.6 Relative Humidity (2-m AGL) ...18
8.1.7 Air Pressure (Surface) ..19
8.1.8 Incoming Solar Radiation (2-m AGL) ...19

8.2 Redundant Data ...21
8.2.1 Air Temperature (2- and 10-m AGL) ...22
8.2.2 Relative Humidity (2-m AGL) ...22
8.2.3 Air Pressure (Surface) ..22
8.2.4 Solar Radiation ...22

8.3 Spatial Consistency of Data ..22

9. Data Applications 23

9.1 V&V Tools and Preliminary Results ...24
9.1.1 NCAR MET Point-Stat ..24
9.1.2 GIS ..25

10. Summary and Final Comments 25

11. References 28

Appendix A. Meteorological Sensor Array (MSA)-Phase I, CR23X Micrologger
Program 29

Appendix B. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Logger
Program 35

Appendix C. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Sonic
 Program 43

Appendix D. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Averaging
Program 51

Appendix E. Data Management Program – Meteorological Sensor Array (MSA)_
Mountain Standard Time (MST)_Automate.vbs 63

Appendix F. Data Management Program – MSA_QC_MST.gle 71

Appendix G. Data Management Program – Met_ASCII_UTC.vbs 83

v

Appendix H. Data Management Program – MET_ASCII_UTC.wbt 93

List of Symbols, Abbreviations, and Acronyms 95

Distribution List 97

vi

List of Figures

Fig. 1 MSA locations—Phase I field campaign was completed in 2014, the locations for
Phases II and III are projected locations ..4

Fig. 2 The RM Young 81000 Ultrasonic Anemometer was the sensor quantifying the
dynamic atmospheric attributes ...5

Fig. 3 Dynamic sensor side-by-side intercomparisons ..6

Fig. 4 Thermodynamic sensor side-by-side intercomparisons ..7

Fig. 5 a) MSA tower #4 at White Sands Missile Range (WSMR); NM, b) 10-m tower
(Climatronics Corp 2014). Fig. 5b used with permission from David W Gilmore Met One
Instruments, Inc. – Climatronics Division. ..9

Fig. 6 MSA tower environmental enclosure ..10

Fig. 7 MSA tower solar panel, batteries (covered), and power inverter11

Fig. 8 The integrated thermodynamic and dynamic DAS ...12

Fig. 9 Summary of the MSA-Phase I power connections ..14

Fig. 10 MSA-Phase I communications/network connections ..15

vii

List of Tables

Table 1 Pre-Phase I field-campaign sonic calibration position assignments. Position number
1 was the southern-most position—8 northern-most. Each number listed under a Group
heading represents a specific sonic. ...6

Table 2 Sensors used in the MSA Phase I “Proof of Concept” design ..8

Table 3 Climatological temperatures in degrees Centigrade, at WSMR, NM. Adapted from
Weather Channel at http://www.weather.com/weather/wxclimatology/monthly/88002.........18

Table 4 The 1948 to 1971 average relative humidity at WSMR from Fugate and Chambers
(1972) ...19

Table 5 The 1948 to 1971 average surface pressure in millibars, at the WSMR Station A,
near the Headquarters Building, from Fugate and Chambers (1972)19

Table 6 Average solar radiation in W/m2 for each hour and month. These values are
averages of 2011–2013 measurements made at the White Sands Museum. Data were
obtained from the University of Utah, Department of Atmospheric Sciences Web site
(University of Utah 2014). http://mesowest.utah.edu/cgi-
bin/droman/mesomap.cgi?state=NM&rawsflag=3 ..20

Table 7 Standard deviation of solar radiation in W/m2 for each hour and month. These
2011-2013 measurements made at the White Sands Museum. Data were obtained from
the University of Utah, Department of Atmospheric Sciences Web site.
http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3...................21

viii

INTENTIONALLY LEFT BLANK.

ix

Acknowledgments

The authors wish to thank Mr. Charlie Perez (Survivability/Lethality Analysis Directorate) for
his invaluable support in the construction and maintenance of the Meteorological Sensor Array
(MSA) Phase I field campaign. Appreciation is also expressed to the White Sands Missile Range,
Range Operations-Telemetry Branch, Meteorological Section (Jim Wilkes, Mark Chaffin, Joshua
Struiksma, and Ubaldo Soto) and High-Energy Laser Systems Test Facility (Tim Chavez) for
their field campaign contributions. For his interest and support in the areas of Model Validation
and Verification and Data Management topic, we thank Dr. Jeffrey Smith. To Felipe Chavez, we
are most grateful for your ever efficient and knowledgeable skills in getting required
administrative paperwork prepared and processed in a timely manner.

Many thanks go to the Technical Publishing Branch at White Sands Missile Range (WSMR),
NM, for their consistent high standard of editing, specifically Sherry Larson.

x

INTENTIONALLY LEFT BLANK.

xi

Executive Summary

Army decisions can be improved only when the information on which the decisions are based is
improved. Environmentally-dependent decisions involving the atmosphere rely heavily on
accurate atmospheric models. The “Army-scale” atmospheric models include high-resolution
(<1-km) models. Locating meteorological observations to validate these high-resolution
atmospheric models is very difficult. The National Research Council (NRC) recognized this
critical technological gap, after they reviewed the US Weather Research, and Researcher-to-
Operations progress and priorities in 2009. Numerous NRC conclusions and recommendations
produced by this forum centered on this void in the atmospheric research community.

The US Army Research Laboratory (ARL) has responded to the National and Military need by
proposing an observational data resource specifically designed to address the “Army-scale”,
high-resolution atmospheric model validation and verification issues. The manifested solution is
called the Meteorological Sensor Array (MSA).

The MSA vision is built on improving Army decisions by strengthening environmentally-
dependent decision aids through validated high-resolution atmospheric models in the boundary
layer. The MSA is intended to provide reliable and persistent data resources, which, in turn,
allow atmospheric modelers and sensor developers to validate and compare model and sensor
performance with atmospheric observations at and near the surface and in close proximity to
terrain of varying complexity.

The multiphase program was initiated with a “Proof of Concept”, which included 5 equally
spaced meteorological towers around a large Solar Photovoltaic (PV) Farm. Phase II will
integrate Phase I (“Proof of Concept”) lessons learned, as it expands the array into a 36-tower
gridded design. The project location of Phase II is projected to be a mid-valley, desert location.
Phase III will mirror the 36-tower configuration, in a climatologically upwind location with a tall
mountain range in between the two 36-tower arrays. Additional volume measurements will
supplement the design. Phase IV will focus on mobilizing the array with supplemental sampling
technology. Phase V is envisioned as having the capability of participating in remote test site
field campaigns.

The MSA Phase I field campaign began with a calibration of all sensors slated for field usage. A
brief description of the side-by-side sensor intercomparison configuration and results is in
Section 2.

The MSA tower design included a portable lightweight aluminum tower with sensors mounted
on the 2- and 10-m levels. The data acquisition systems (DAS) were divided into 2 categories:
Thermodynamic and Dynamic DAS. A Campbell Scientific CR23X micrologger assimilated the
Thermodynamic 1-min averaged data. The variables consisted of pressure, temperature (2- and

xii

10-m above ground level [AGL]), relative humidity (2-m AGL), and insolation (2-m AGL). The
Dynamic data originated from 2 RM Young 81000 Ultrasonic anemomemters (2- and 10-m
AGL) sampling at 20 Hz. The variables acquired were wind speed, wind direction, u-component,
v-component, w-component, speed of sound and sonic-temperature. The raw dynamic data were
preserved in files on a laptop computer then reduced to 1-min averages. The dynamic and
thermodynamic 1-min averages were merged with the thermodynamic data. A Digi Edgeport
RS232 multiport adapter bridged the 2 data resources. A system clock on each tower was
synchronized using the Network Time Protocol (NTP).

Electrical power for the remotely located towers came from a PV panel, charge controller and
battery storage unit, specifically tailored to support the temporary Phase I tower configuration.
The direct current (DC) electronics received a direct feed from the battery, whereas, the
alternating current (AC) requirements of the computer and wireless adapters (communications)
utilized an inverter. Future Phases will have reduced electrical tower requirements, and therefore,
a modified power resource design.

The arrival of the Phase I wireless technology was delayed, due to bureaucratic approval
processes. Consequently, the initial data flow required a daily “sneaker net” download of data
from each tower, manual maintenance and monitoring of each tower, and a constant time
synchronization check. Once the wireless technology could be installed, these 3 functions were
done through a remote access.

Data processing began with the averaging and merging of thermodynamic and dynamic data.
Plots of the time series of each sensor were created and reviewed, daily.

Research into automating and improving data quality assurance were investigated. One
suggested improvement was to program quality assurance limits that would automatically flag
potential data issues. Tables framing these limits are given in Section 8. Automating the
intercomparison of neighboring sensors was also suggested.

The MSA design was intended for multiple applications. Model validation and verification
(V&V) was one of the primary Phase I applications. As part of the MSA task, the method for
executing a high-resolution model V&V was explored. Mesogamma and microscale models that
were considered were the Weather Running Estimate-Nowcast (WRE-N) model and the Three-
Dimensional Wind Field (3DWF) model. The tower locations and spacing were based on the
3DWF model; however, the model was not available during the field campaign, so that V&V
implementation was postponed. Instead, the MSA observations were weighed against a WRE-N
model output. Format changes to accommodate both the WRE-N model attributes (spatial and
temporal scales) and the Model Evaluation Tools (MET) statistical tools were developed.
Reasonable numerical results were produced, confirming the feasibility of a model grid to
observation point comparison. Elaboration and interpretation of the V&V results were left for a
separate publication.

xiii

Two core goals for the MSA Phase I task were to create a MSA development plan and to
manifest a “Proof of Concept” from which future MSA Phases could be built. This report
outlines the MSA Development Plan and documents the manifested MSA Phase I “Proof of
Concept”. Based on the success of Phase I, the authors look forward to future, fruitful phases.

xiv

INTENTIONALLY LEFT BLANK.

1

1. Background

Improving Army decisions requires one to improve the information on which the decisions are
based. For decisions involving the atmosphere, decision aids have been developed by the US
Army Research Laboratory (ARL). These decision aids are based on atmospheric models, which
are, in turn, based on algorithms. Physical science gleans these algorithms from measurements
and observations. With high-quality measurements, informed decisions can ultimately be made.

One of the steps in the above cycle is to improve the atmospheric models that serve the decision
aids. For the Army, this step requires observational ground truth data at various scales. Large
resolution datasets for this task are available. However, for urban environments and foot Soldier
tasks, the scale can quickly shift to very high-resolution (<1 km) datasets. The topic of this report
centers on the search for a high-resolution atmospheric observational dataset.

1.1 The Challenge

One of the toughest challenges for validating high-resolution atmospheric models is finding a
high-resolution (1 km or less), gridded-observation dataset that matches the model output grid.
The National Oceanic and Atmospheric Administration (NOAA)/National Centers for
Environmental Prediction (NCEP) Real-Time Mesoscale Analysis (RTMA) provide dataset
products over the Continental United States at a horizontal grid spacing of 2.5 km. For verifying
an “Army-scale” of 1 km or less horizontal model grid spacing, use of this product requires a
remapping of the 1-km model output to a 2.5-km grid spacing, to achieve a common grid with
the RTMA product. This process can result in a smoothing of wanted details in the high-
resolution forecast-observation comparison.

The Variational Local Analysis and Prediction System (LAPS) developed by NOAA, Earth
System Research Laboratory is another high-resolution gridded observation data resource. This
system is a fully integrated, data assimilation and analysis system designed to integrate all types
of meteorological observations using an analysis scheme to harmonize high-resolution temporal
and spatial data onto a regularly spaced grid (Bennett et al. 2000). Through joint ARL and
NOAA efforts, this Variational LAPS is being modified to generate an army-scale (1 km)
gridded-observation output. As with the RTMA product, however, there is a potential for losing
critical information during the harmonization of temporal and spatial data into a high-resolution
data analysis.

The inadequacy of mesoscale observations was recognized during the 2009 National Research
Council (NRC), Board on Atmospheric Sciences and Climate (BASC) Summer Study workshop
on “Progress and Priorities of US Weather Research and Research-to-Operations Activities”. In
this workshop, the NRC BASC identified priorities for addressing the national inadequacy as a
challenge for developing accurate high-resolution mesoscale forecast models. These challenges

2

were identified as knowledge gaps to be addressed over the next decade. The following list
captures some of the many NRC conclusions and recommendations (National Research Council
2010):

• Observations remain inadequate to optimally run and evaluate most high-resolution models
and determine forecast skills at various temporal and spatial scales.

• Assessing predictive skill is difficult, because deficiencies arise from the data and data
assimilation process; errors can be found in the numerical representation; there can be
intrinsic predictability limitations, and forecast verification methodology challenges. The
board stated that there is a pressing need for Research and Development (R&D) leading to
improved mesoscale data assimilation techniques in operational forecast systems. Further,
the board stated that the basis for current knowledge of assimilation techniques is
weakened by the inadequate mesoscale surface observations and lack of systematic
measurements of the lower troposphere profiles of water vapor, temperature, and winds.

• The board concluded that improved analyses from mesoscale models using data
assimilation techniques requires better knowledge of systematic errors in observations
because of the inadequacies of the current mesoscale observations.

• The board stated that it is important that mesoscale observations are a focus of test beds
designed to develop and introduce new ideas and procedures in environmental observation.
They suggested the use of networks that combine observations from satellites, airborne
sensors, and surface platforms. Another focus was to examine the role of mesoscale
observations for new paradigms in the end-to-end forecast process important with respect
to merging methods in Nowcasting with those of dynamic prediction 0–6 h range.

• The board stated the following high-priority mesoscale observing needs based on their
assessment that there are essentially no current systematic national capabilities:

o Planetary boundary layer height;

o High-resolution vertical profiles of humidity and temperature

o Improvements in the following measurements for direct and diffuse solar radiation,
wind profiles, temperature profiles, surface turbulence, and near surface icing

• The board stated that one of the principal goals of the urban test bed is the meteorological
and air quality measurement network (urban mesonet), which provide observations at high
spatial and temporal resolutions from the urban core to the surrounding hinterland. The
commonly accepted approach is to oversample in the test bed and use data denial modeling
techniques to identify an optimal network design (or multiple, optimum designs). Data
from the urban mesonet then provide the basis for a number of important activities in the
urban test bed: development and testing of data assimilation and prediction models; model-

3

verification metrics; and applications where the observations themselves support various
applications.

• The board stated that data assimilation, as part of the forecast system, is also important for
acquiring and maintaining observing systems that provide the optimal cost-benefit ratio to
different user groups and their applications. Data denial experiment can selectively
withhold data from one (or more) system(s) and assess the degradation in forecast skill.
Data assimilation can be used to determine the optimal mix of current and future in situ and
remotely sensed measurements and for adaptive or targeted observations. It is also
beneficial to understand the impacts of observing systems on model performance and the
resulting forecast accuracy.

• The board stated that observational data with high temporal and spatial resolution are
crucial to the understanding of atmospheric processes, providing data for assimilation in
models, and evaluating and improving those models. This requires the synergistic
combination of data from diverse sources. Rawinsonde, radar, satellite, and aircraft data as
well as data from other sources all play complementary roles in weather research and
forecasting.

Contemporary mesonets provide atmospheric measurements and can be found around the world.
However, the stations are often far apart and on irregular grids. Various atmospheric field studies
have been conducted that include high-resolution data sampling, but they are generally of a time-
limited duration. The question remains, “Is there a long-term, high-resolution observational data
resource?” This report describes ARL’s response toward the lack of high-resolution
observational data for atmospheric model development, improvements, and calibration.

1.2 Meteorological Sensor Array (MSA) Overview

ARL is constructing a MSA, a gridded sensor array in southern New Mexico. The underlying
goal of this endeavor is to improve atmospheric models (and sensor technology), by optimizing
high-resolution forecast-observation comparisons. A description of the MSA vision and evolving
program follows.

1.2.1 MSA Vision

ARL’s vision for the MSA Program was built, in part, on addressing the national need for high-
resolution observational data in developing and evaluating high-resolution micro to mesogamma-
scale forecast models. Such model development includes, but is not limited to, exploring new
phenomena and analysis methods for near surface, high-resolution weather forecasting. The
MSA model evaluation interests are aimed at integrating a powerful observation resource with
both traditional and nontraditional model validation and verification (V&V) methods. Examples
of both V&V methods are in Section 9.

4

The 3 underlying objectives framing the MSA Program are the following: 1) to provide reliable
and persistent data resources that allow atmospheric modelers and sensor developers to validate
and compare model and sensor performance with meteorological observations at and near the
surface, in terrain of varying complexity; 2) to significantly improve high-resolution atmospheric
models in the boundary layer; and 3) to improve model and sensor accuracy and efficiency.

A description of this multiphase MSA Program is described in the next section.

1.2.2 MSA Program Phases

The ARL MSA Program was subdivided into several phases. MSA-Phase I was designated as a
“Proof of Concept”. This “Proof of Concept” consisted of 5 meteorological towers, which
acquired 8 weeks of 24 h/day–7 days/week (24/7) data, over southern New Mexico. At the time
of this writing, Phase I was actively working through its post-field campaign tasks. Sections 3
through 7 will describe Phase I, in more detail.

MSA-Phase II is envisioned as a 36-tower array located in a New Mexico desert valley. Phase III
supplements the Phase II array with another 36-tower array located climatologically upwind
from the New Mexico desert valley. Figure 1 shows projected locations for the MSA Phases II
and III. A taller than 2-km mountain range would separate the two 36-tower data resources. The
Phase III configuration is also envisioned to have additional sensor types, such as tethersondes,
rawinsondes, and possibly unmanned aerial systems.

Fig. 1 MSA locations—Phase I field campaign
was completed in 2014, the locations for
Phases II and III are projected locations

Phase IV shifts the focus onto mobilizing the array. A portable two-dimensional array would be
created and include a triple Lidar. The Lidar would be coordinated with sodars, tethersondes, and
an unmanned aerial vehicle. Phase V is slated as a remote test site capability to be coupled with
other field campaigns.

5

2. Sensor Calibration

The sensor calibration task was divided into 2 categories: dynamic and thermodynamic sensors.
The dynamic sensor consisted of 20 ultrasonic anemometers measuring winds (see Fig. 2), sonic-
temperature and speed of sound. The thermodynamic sensor group included 26 sensors
representing 4 variables: pressure, temperature, relative humidity, and insolation.

Timely access to a calibration laboratory was not an option; consequently, a side-by-side sensor
intercomparison (a relative calibration) was conducted. The configuration and preliminary results
are described next.

Fig. 2 The RM Young 81000 Ultrasonic
Anemometer was the sensor quantifying
the dynamic atmospheric attributes

2.1 Dynamic Sensor Calibration

The sonic anemometer intercomparisons were conducted on the flat roof of a 2 story building.
The anemometers were arranged in a row, mounted on 4 tripods with 2 sensors per tripod (see
Fig. 3). The sensors on each tripod were mounted at the ends of a crossbar, with all 8 sensors
separated by an even spacing of 1.13 m. This pattern was repeated for all 3 anemometer
calibration periods keeping 1 sensor common to all 3 acquisition periods. A total of 20 sonic
anemometers were compared (see Table 1), using a north-south orientation; prevailing winds
were from the west.

6

Fig. 3 Dynamic sensor side-by-side intercomparisons

The sonic measurements were acquired on a central data collection computer, using an 8-port
RS232 adapter and Labview software to collect and timestamp each reading.

Table 1 Pre-Phase I field-campaign sonic calibration position assignments. Position number 1
was the southern-most position—8 northern-most. Each number listed under a Group
heading represents a specific sonic.

Sonic Calibration
Sampling Positions

Group I
(2014 Feb 10–13)

Group II
(2014 Feb 14–17)

Group III
(2014 Feb 19–23)

1 #1343 #626 #498
2 #1355 #633 #499
3 #1356 #634 #633
4 #1341 #1341 #1341
5 #1357 #637 #646
6 #1359 #638 #650
7 #1361 #646 #712
8 #1370 #1354 #726

A qualitative review of the side-by-side data showed the sensors as being worthy of the MSA
“Proof of Concept” data acquisition task. A more detailed analysis will be reported in a separate
document.

2.2 Thermodynamic Sensor Calibration

Side-by-side, thermodynamic sensor intercomparisons were executed prior to erecting the MSA
Phase I “Proof of Concept” towers. The intercomparison was situated on the south side of a
1-story office building, and consisted of 26 sensors, linked by 5 Campbell data logger systems
(see Fig. 4). The thermodynamic variables sampled included pressure, temperature, relative
humidity, and solar radiation. All thermodynamic data were saved in 1-min averaged samples.

7

Fig. 4 Thermodynamic sensor side-by-side intercomparisons

The center tripod had new, or calibrated within the last year, sensors and a CR23X mounted on
it. Sensors mounted on tripods to either side of the recently calibrated “standard”, had the
“unknowns” or instruments for testing.

All sensor positions on the individual tripods (height above ground, distance from the tripod or
boom) were carefully aligned to within 2 cm of each other. For reference, the wall of the
building, which was north of the tripods, was aligned almost exactly on a true east-west line.

The MSA Phase I “Proof of Concept” used hardware components from previous field tests. This
resource insured that the components had a proven durability and that system development costs
would be kept very low.

Table 2 provides a brief description of the thermodynamic and dynamic components used for the
MSA “Proof of Concept” field campaign.

8

Table 2 Sensors used in the MSA Phase I “Proof of Concept” design

Variable Sensor Manufacturer Model Units

Pressure Barometer Vaisala PTB-101B/PTB110 Millibars
Temperature Thermometer Campbell T107 Celsius

Temperature/
Relative Humidity

Thermometer/
Hygrometer Rotronics HC2S3

Celsius/
Percent

Solar Radiation Pyranometer Kipp/Zonen CM3/CMP3 W/m2

Micrologger ALL Campbell Scientific CR23X . . .

Wind Speed and
Wind Direction

Sonic
Anemometer

RM Young 81000 m/s and degrees

Relative calibration data were acquired from 2014 February 25 to March 06. A qualitative
review of the side-by-side data showed the sensors as being worthy of the MSA “Proof of
Concept” data acquisition. A more detailed description of the software used and a data analysis
will be reported in a separate document.

3. Tower Design Description

The MSA Phase I 10-m tower was a portable lightweight aluminum tower from Climatronics
Corporation that consisted of three 10-ft (3.048-m) sections bolted together on each vertical leg
of the tower (see Fig. 5a and b). The tower included a tilt-down base plate and adjustable center
mast capable of extending the height to accommodate a 10-m sensor level and a lightning rod (at
the top) with a full height grounding kit. Each vertical leg of the tower was guy-wired to the
ground from near the top, at approximately 9 m.

9

Fig. 5 a) MSA tower #4 at White Sands Missile Range (WSMR); NM,
b) 10-m tower (Climatronics Corp 2014). Fig. 5b used with permission from David
W Gilmore Met One Instruments, Inc. – Climatronics Division.

10

There were 2 horizontal boom arms (1.25-inch outside diameter thick wall aluminum pipe)
mounted, (true) east to west, on the towers to accommodate meteorological sensors at the 2- and
10-m levels. The bottom boom arm was mounted at approximately 1.33 m. Risers were used to
place the sensors at precisely 2-m above ground level (AGL). A sonic anemometer (RMYoung
81000) was mounted on the climatologically upwind (west) end of the bottom boom arm
1.143-m (45 inches) away from the tower framework. A (Rotronics HC3S2) temperature/relative
humidity sensor was mounted inside a naturally aspirated temperature shield on the east end of
the bottom boom arm. The upper boom arm was mounted on the tower center mast and risers
were used to place the sensors at precisely 10-m AGL. A second (RMYoung 81000) sonic
anemometer was mounted on the west end of the upper boom and a (Campbell Scientific T107)
temperature probe was mounted on the east end. A Kipp & Zonen CM3 pyranometer was
mounted, with a custom made boom arm, on the south side of the tower and was attached at a
level so that the custom made boom arm placed the sensor at precisely 2-m AGL. The final
meteorological sensor, a (Vaisala PTB 101, PTB 110 on tower 1) digital barometer, was
mounted inside the environmental enclosure near the bottom of the tower. The pressure sensor
was mounted between 1- and 1.5-m AGL, and was present at Towers 1, 2, and 4 only.

The white environmental enclosure was a Campbell ENC 16/18 unit fiberglass-reinforced
polyester box (width × height × depth: 16 inches × 18 inches × 9 inches) mounted on the north-
east side of the tower at approximately 0.75-m AGL (see Fig. 6). When the field campaign was
extended, these enclosures were reconfigured with vents and had a fan installed to prevent
overheating.

The enclosure box contained the barometer, system data logger, a laptop computer, an Edgeport
multiport serial-to-Universal Serial Bus (USB) convertor, relocatable power tap, and computer-
to-antenna electronics. Tower #3 had a TM 1000A global positioning system (GPS) network
time server, as well as, the electronics that supported the relay antenna linking the tower array to
the computer base station located several miles away.

Fig. 6 MSA tower environmental enclosure

11

The tower instrumentation was powered with both 12-V direct current (DC) and 110-V
alternating current (AC) current. The 12-V batteries were mounted on a wooden stand, away
from the tower that also served as the mount for a 60 cell, 250-W SHARP (Sharp model
ND250QCS 250W) solar photovoltaic (PV) panel. The PV panel charged the batteries during the
day. A Cotek S300-112 Pure Sine Wave l DC to AC power inverter was used to supply the AC
current (see Fig. 7). As part of a Phase Ib, the 12-V battery pair at each tower was later replaced
by four 6-V Interstate GC2-XHD-UT batteries. The PV batteries were 232-ampere-hour (Ah)
rated and were used to increase the stability of the daytime power delivery.

Fig. 7 MSA tower solar panel, batteries (covered), and power inverter

The communication links between towers are described in Section 6.

4. Tower Data Acquisition Systems (DAS)

Two DAS were used for the MSA Phase I field campaign: a thermodynamic DAS (“Logger
DAS”) and a dynamic DAS (“Sonic DAS”). Figure 8 shows the 2 systems and their integration
data flow pattern. Each DAS is described separately.

12

Fig. 8 The integrated thermodynamic and dynamic DAS

4.1 Thermodynamic (Logger) DAS

The thermodynamic DAS collected measurements of pressure, temperature, relative humidity
and insolation. These data were linked together using a micrologger (see Fig. 6); thus, this part of
the configuration was also called “Logger DAS”. All thermodynamic sensors were hardwired
into a Campbell Scientific, CR23X Micrologger located in the all-weather enclosure, mounted on
the tower. When this data logger was connected to a Microsoft Windows computer running
Loggernet software, we were able to manipulate the program in the CR23X Micrologger and do
near real-time quality control data screening. When this data-logger was wired to the MSA
computer, via an RS-232 to USB using the Digi Edgeport RS232 multiport adapter, control of
the logger output was handed off to the MSA computer.

Prior to the sensor installation on the towers, the towers were laid out to identify required
heights, fasteners, grounding cables, cable tie-downs, data cables, tower cross-arms, and
instrument placing. Each sensor was individually calibrated and the CR23X Micrologger
software was tested (see Section 2).

The Campbell Scientific CR23X Micrologger program that was created used Loggernet
software-Version 3.4.1 for Microsoft Windows. This program was downloaded into the CR23X
Micrologger via a USB to RS-232 cable. The program’s function was to control the data
collection and distribution. Specifically, the program sampled atmospheric conditions every 10 s,
then output 1-min averages. Appendix A displays a sample of the micrologger program
(Campbell Scientific 2004).

13

4.2 Dynamic (Sonic) DAS

The dynamic DAS collected all the ultrasonic anemometer data and was also referred to as the
“Sonic DAS”. The serial data collection for each tower included both RM Young 81000
ultrasonic anemometers. The collection design also downloaded data from the Campbell
Scientific CR23X data logger.

These data were collated by a laptop computer, which managed collection programs, time
synchronization, communications, and file management. The computer was connected to a Digi
Edgeport RS232 multiport adapter, allowing up to 8 serial ports. The data from each port was
collected using a C program, which polled the serial ports and saved each data line with a
prefixed time stamp. Each serial data source was saved to its own file, and a new file was
spawned at the start of each hour. After a new file was created, the files from the previous hour
were automatically averaged by another C program.

The system clock on each tower was synchronized using Network Time Protocol (NTP), to
ensure all time stamps from each tower were consistent.

5. Tower Power Design

The MSA towers needed to operate independently, in remote locations without an infrastructure.
The primary challenge was providing reliable electrical power. The challenge was answered with
solar power, after assessing the system power requirements:

DC systems include a logger and 2 sonics, which required approximately 5 W. The AC
systems included wireless technology (4.5 W) and a laptop. The average laptop power
need varied by unit, with a typical draw between 15 and 35 W. A maximum average
requirement was determined to be about 45 W, over 24 h; meaning 1,080 watt-hours
(whr) per day. With an average sunlight of 7 h, an average of 150 W was required.

This total wattage was more than the typical portable solar panels output could provide.
Consequently, a grid tie sized panel (a 60-cell panel, sized for residential/commercial use) was
selected, with an output of 250 W. A secondary benefit to choosing a grid tie sized module was
their lower price; grid tie sized panels are mass produced for use by commercial solar power PV
arrays.

The use of the 60-cell panel necessitated the use of a maximum power point tracking (MPPT)
charge controller, which allowed for a wide difference between input and output voltages. A
Morningstar 45 amp controller was selected for durability and simplicity. A pure sine wave
inverter was selected to prevent interference with active power factor circuits in computer power
supplies. Figure 9 summarizes the MSA-Phase I power connections.

14

Fig. 9 Summary of the MSA-Phase I power connections

6. Communications

MSA communications served 3 functions: They downloaded the tower data, allowed system
maintenance and monitoring, and they provided a conduit for time synchronization. During the
initial Phase I field campaign, procurement delays of the wireless technology resulted in a daily
manual download of data. The 5-tower data download required a total of approximately 800 MB
per day per tower. While the manual daily data download was successfully executed from the 5
towers, this method did not represent a practical mode for the larger full-scale (36 towers)
design. Once the wireless communication technology was installed, the daily quality-control
assessments were executed much more efficiently. Visual tower inspections were reduced to
1 per week during the field campaign time period.

The wireless communications design was composed of wireless adapters mounted on each tower.
On Tower 2, an additional large omnidirectional antenna established the central wireless adapter
for the tower network. This adapter was setup in “access point” mode, whereas, the other tower
adapters were setup in “client mode”. The “client mode” adapters used directional antennas to
link with the central access point. A backhaul link to a central control station (MSA
Headquarters) was established using directional adapters in “bridge mode”. These adapters were
placed on Tower 3 and the roof of the central MSA control station building. This backhaul link
was connected to the “client adapter” at Tower 3 using an Ethernet switch. Tower 3 was chosen
for the backhaul link due to its clear line of sight. A NTP service was added to the data flow
using GPS time servers located at Tower 4 and in the central control station. Automated data

15

download was provided using secure copy through cron scripts to download all data to the
central control station building every hour. Figure 10 diagrams the wireless design.

Networking the data acquisition computers facilitated the monitoring of current data collection
and allowed updates for any software that may need modification.

The presence of a network allowed automatic synchronization of all system clocks using NTP,
which was built into the Linux operating system. This synchronization was critical for
maintaining consistent time stamps across the data array.

Fig. 10 MSA-Phase I communications/network connections

7. Data Processing

The MSA data processing began with raw data being acquired by the sensors. These raw data
were preserved with their respective time stamps and formatting. The raw sampling rates were
1-min averages for the Logger DAS data, and 20-Hz data for the Sonic DAS data. Examples of
the computer programs executing the data processing functions are in Appendixes B–D.

The Sonic raw data files were reduced to 1-min averages and merged with the Logger data into
1 file. Prior to the wireless communications, the merged data were manually downloaded from
each tower to a portable storage medium. Using the “sneaker net”, these files were transferred to
a UNIX workstation that served as the MSA hub at the MSA control station building. With the

16

implementation of the wireless network, a cron job was created to run every hour on the UNIX
workstation to automatically download merged data from each tower to the MSA hub.

An MSA data visualization tool was used to process the merged data into plots representing the
last 24–48-h period, in Mountain Standard Time (MST). The MST time stamp was locally
chosen for its efficient daily data assessment, based on the local diurnal effects. The automated
plotting routine consisted of 2 programs: The wrapper program was written in Visual Basic
Script, and merged all the hourly files into one 24-h period file, for each tower. The 24-h data
file was then passed to a Graphic Layout Engine (GLE) script, to plot the data. The output
generated a summary page with 12 parameter plots for each tower. A wrapper program saved the
tower plots as a jpg image, giving it a descriptive name. See Appendix E, for the Visual Basic
Script source code, and Appendix F, for the GLE program.

To support the MSA model V&V application project, another data processing tool reformatted
MSA merged data into Model Evaluation Tools (MET) specific American Standard Code for
Information Interchange (ASCII) Point Observation text files (See Appendices G and H). The
V&V application took merged 24-h data files of all towers, extracted certain parameters,
calculated additional variables and reformatted the results into a configuration compatible with
the V&V assessment software-MET Point-Stat. A log was then kept of the reformatted files, for
a given date, that were transferred to the destination workstation for V&V processing.

An effort to automate the above processes is underway. A graphical user interface (GUI) is being
constructed using WinBatch, which will automate the File Transfer Protocol procedure from the
field computer to a V&V workstation, as well as, the Met ASCII reformatting process.

8. Automated Quality Assurance Protocol

During the MSA “Proof of Concept” field campaign, a daily data review was conducted. The
process began with the MSA data from the previous 36 h being converted from data files into
plotted time series of each sampled variable, as well as some calculated parameters (see Section
7). These time series were visually reviewed on a daily basis. The analyst reviewed the plots for
sonic and logger errors, tower battery voltage dropping too low, DAS panel temperature rising
too high, etc. An inter-tower data comparison was also assessed. The analyst then created a daily
report that gave the status of all towers and detailed any anomalies observed over the previous
36 h along with weather conditions over this time period and any recommendations. Tools to
execute the above tasks were tested, refined and re-tested throughout this daily data processing
implementation exercise.

Investigating future MSA data processing tools was part of the MSA Phase I “Proof of Concept”
effort. One area investigated was the automating of the data Quality Assurance (QA) Protocol.
The remainder of this section describes the key findings.

17

Invalid meteorological measurements can be caused by equipment failure, a lightning strike, or a
power outage. The purpose of an automated QA algorithm is to flag data that fall outside
designated ranges, so that the MSA team is alerted early to potential problems. The QA limits are
designed to provide an early warning of sensor failure, so that repairs can be made quickly with a
minimum of data loss. The following QA limits are modified from the protocols used by the
Oklahoma Mesonet, as discussed in Fiebrich et al. (2010).

8.1 QA Limits

A scenario for utilizing QA limits would be the following. An automated QA would flag data
overnight. The MSA team would review the flagged data every morning and determine what
corrective actions, if any, need to be taken. The team would also review daily time series plots of
each meteorological parameter from each tower. Plots of voltage output and panel temperature
would be reviewed. Both a manual review and an automated QA Protocol would be an integral
part of the quality assurance process in order to achieve the goal of producing high-quality
meteorological data.

Initial instrument parameters would be set according to the manufacturer specifications (see the
following examples).

8.1.1 Battery Voltage

The normal range for field batteries is 10 to 16 V. The following voltages would be flagged to
ensure that battery problems are corrected before data loss occurs:

• Data collected with a battery voltage of 11.5 V is likely to be valid.

• Battery voltages below 11.5 V indicate that the battery may soon fail, so voltage
measurements below 11.5 V would be flagged.

• When the solar radiation is at its peak, the battery voltage should also be high. A “peak”
battery voltage below 13.5 V would be flagged, because it would indicate a decreased
efficiency in the solar energy collection process.

8.1.2 Panel Temperature

Logger panel temperatures less than 0 °C, or greater than 40 °C, would be flagged, because
computers and other electronic equipment do not operate properly at these temperatures. For the
area of the MSA Phase I field campaign site, as well as the proposed Phase II and III sites, such
extreme temperature are part of the climatological record. The lowest temperature reported was
−23 °C in January of 1962, and the highest temperature was 43 °C in June of 1994. Heat released
by the computer and the sensors can be about 5 °C warmer than the ambient temperature.
Combining the local ambient warmth with the equipment-generated heat, there is a high
likelihood that the data logger operating ranges will be exceeded during the hot summer months.

18

8.1.3 Internal Quality Control

Sensors that would be installed on the towers have internal components that monitor the internal
temperature. When the internal temperature of a temperature sensor falls outside of the
recommended operating range, the instrument QA would automatically flag the data.

8.1.4 Climatological Average Values

Climatological minimum and maximum values were available for all parameters used in Phase I,
except relative humidity. The MSA quality assurance algorithm would flag measurements that
are outside of the climatological minimum and maximum averages. Because extreme weather
events can cause meteorological measurements to fall outside climatological norms, the MSA
team would determine whether flagged data are valid.

8.1.5 Air Temperature (2- and 10-m AGL)

The climatological average, minimum and maximum data temperature in Table 3 are adapted
from the Weather Channel (2014), and covers a period of approximately fifty years over an area
near the MSA Phase I site. The specific location of these measurements was not available from
the Weather Channel.

Table 3 Climatological temperatures in degrees Centigrade, at WSMR, NM. Adapted from Weather Channel at
http://www.weather.com/weather/wxclimatology/monthly/88002.

Month Average
High

Average
Low Average Record High Year Record

Low Year

January 15 –2 7 26 1970 –23 1962
February 18 1 9 29 1986 –21 2011

March 21 3 12 32 1989 –12 1965
April 26 7 17 36 2000 –4 1973
May 31 12 22 40 2005 –3 1967
June 35 17 26 43 1994 6 1971
July 35 20 28 42 1994 13 1983

August 33 19 27 40 2007 11 1970
September 31 16 23 39 2011 4 1965

October 26 8 17 35 2000 –6 1970
November 19 2 11 31 1988 –20 1976
December 14 –2 7 25 1987 –15 1987

8.1.6 Relative Humidity (2-m AGL)

The average relative humidity values in Table 4 were obtained from the White Sands Missile
Range Climate Calendar (Fugate and Chambers 1972). From 1948 to 1971, Fugate and
Chambers tabulated average daily and monthly meteorological values for “Station A”, which
was located at the base headquarters.

http://www.weather.com/weather/wxclimatology/monthly/88002
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=1
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=2
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=3
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=4
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=5
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=6
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=7
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=8
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=9
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=10
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=11
http://www.weather.com/weather/wxclimatology/daily/88002?climoMonth=12

19

Table 4 The 1948 to 1971 average relative humidity at WSMR from Fugate and Chambers (1972)

Month Average 5 AM Average 11 AM Average 5 PM Average 11 PM Average

January 54 42 38 47 45
February 49 36 29 40 39
March 41 28 22 33 31
April 35 23 17 27 26
May 34 21 16 25 24
June 38 23 18 28 27
July 58 36 31 46 43
August 59 37 31 43 43
September 56 36 30 45 42
October 51 33 29 42 39
November 51 34 34 44 41
December 56 42 38 49 46

8.1.7 Air Pressure (Surface)

The mean surface pressure values in Table 5 were obtained from the 1948 to 1971 data of Fugate
and Chambers (1972). Table 5 also contains average low- and high-surface pressures.

Table 5 The 1948 to 1971 average surface pressure in millibars,
at the WSMR Station A, near the Headquarters Building,
from Fugate and Chambers (1972)

Month Average Highest Lowest

January 872.64 888.49 851.92
February 870.88 886.12 852.59
March 869.39 886.45 852.59
April 868.98 885.78 852.93
May 869.25 883.07 856.32
June 869.39 879.34 857.00
July 871.93 882.05 862.41
August 872.40 880.70 863.77
September 871.96 882.05 860.38
October 872.47 887.81 856.66
November 872.61 888.49 856.32

December 872.61 890.01 853.27

8.1.8 Incoming Solar Radiation (2-m AGL)

The incoming solar radiation was measured at the White Sands Museum, NM. Using
measurements from 2011 to 2013, the average solar radiation was calculated by the month and
hour (Table 6). The standard deviation by month and hour was also calculated (Table 7). Solar
radiation measurements that differ by more than 1 or 2 standard deviations from the

20

climatological average values should be flagged. Nighttime and early morning hours
measurements should equal zero.

Table 6 Average solar radiation in W/m2 for each hour and month. These values are averages of 2011–2013
measurements made at the White Sands Museum. Data were obtained from the University of Utah,
Department of Atmospheric Sciences Web site (University of Utah 2014).
http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3

Hour Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 1 2 15 15 9 3 0 0 2 0
7 27 71 55 101 160 170 113 78 42 19 77 30
8 187 267 235 311 362 371 276 241 194 180 245 158
9 365 455 447 518 573 564 449 423 377 380 399 307
10 505 619 641 714 734 726 609 588 544 546 517 420
11 592 714 781 855 880 849 749 724 669 673 578 489
12 607 721 854 942 954 916 808 798 730 731 594 506
13 565 686 826 940 943 934 802 783 747 731 558 467
14 483 602 769 890 883 876 750 731 700 663 448 375
15 340 437 640 778 810 787 659 617 586 535 294 237
16 159 270 480 633 656 627 527 514 445 386 116 73
17 11 73 288 421 475 459 363 351 274 207 18 3
18 0 1 115 216 272 275 211 178 108 31 1 0
19 0 0 10 41 88 109 76 41 7 0 0 0
20 0 0 0 0 3 8 5 1 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0

http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3

21

Table 7 Standard deviation of solar radiation in W/m2 for each hour and month. These 2011-2013 measurements
made at the White Sands Museum. Data were obtained from the University of Utah, Department of
Atmospheric Sciences Web site.
http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3

Hour Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 2 4 5 19 13 10 4 1 0 4 0
7 31 60 65 66 69 64 63 52 41 26 64 36
8 77 101 118 91 106 68 99 96 194 70 104 89
9 106 128 139 121 128 93 142 122 132 84 137 136
10 133 138 143 127 135 92 155 137 153 102 162 167
11 143 153 140 152 146 116 164 161 185 99 173 185
12 146 184 137 129 155 143 191 171 209 113 166 178
13 149 166 182 147 181 119 221 209 212 123 144 161
14 129 155 193 138 172 114 235 226 204 129 142 137
15 113 140 179 124 144 145 250 229 184 133 130 107
16 87 104 179 118 143 170 223 197 160 108 108 67
17 12 68 161 115 121 142 186 156 121 88 49 4
18 0 3 101 82 93 104 118 103 74 43 4 0
19 0 0 18 43 56 59 58 43 12 1 0 0
20 0 0 0 0 5 11 8 2 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0

8.2 Redundant Data

Meteorological measurements that show no change over time, or change too rapidly could be
indicating that there is a sensor malfunction or other problem occurring. The automated QA
system would be designed to flag data that fall outside of temporal benchmarks so that the MSA
team could quickly attend to equipment issues and minimize data loss. Note that temporal
benchmarks refer to a rate at which meteorological measurements vary over a given time period.

The following temporal benchmarks were adapted from Fiebrich et al. (2010). Measurements
that fall outside these quality assurance limits would be flagged in a future MSA data processing
routine. Note that because a rapidly moving front can also cause rapid changes in temperature,

http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3

22

pressure and solar radiation, the MSA team would need to determine whether the flagged data
are valid or a result of a sensor malfunction.

8.2.1 Air Temperature (2- and 10-m AGL)

• Temperatures increasing by more than 6 °C in 5 min.

• Temperatures decreasing by more than 8 °C in 5 min.

• Temperature data that do not change by more than 0.18 °C.

8.2.2 Relative Humidity (2-m AGL)

• Relative humidity values that increase more than 22% in 5 min.

• Relative humidity values that decrease more than 23% in 5 min.

• Relative humidity values that do not change at least 0.1% in 360 min.

8.2.3 Air Pressure (Surface)

• Surface pressures that increase more than 5 hPa in 5 min.

• Surface pressures that decrease more than 4 hPa in 5 min.

• Surface pressures that do not change more than 0.1 hPa in 30 min.

8.2.4 Solar Radiation

• Solar radiation measurements that change by more than 800 W/m2.

• Solar radiation measurements that do not change at least 0.1 W/m2.

• An adjustment needs to be made for nocturnal measurements which will equal zero W/m2.

8.3 Spatial Consistency of Data

Spatial consistency of data is another QA attribute. Observations that are not consistent with
neighboring stations would need to be flagged. In general, spatial comparisons are most
successful in finding erroneous data when the boundary layer is well-mixed. Comparison of air
temperature data among neighboring stations is best conducted with moderate winds that are
greater than 0.4 m s–1 (Fiebrich et al. 2010).

One spatial consistency algorithm calculates the standard deviation between stations, and flags
data that differ by more than 2 standard deviations from nearby stations. Another method is the
Barnes objective analysis, which computes an expected value by assigning an exponentially
decreasing weight as distance between a station and its neighbor increases. Fiebrich et al. (2010)
discussed other methods such as the optimal interpolation technique and the spatial regression
test. A future project would be to test some of these methods to determine which method will
work best for MSA data.

23

9. Data Applications

Several data applications were identified for MSA Phase I. While most of these applications
were scheduled to have publishable results in the next fiscal year, we can present preliminary
results on the V&V application in this section.

MSA-Phase I objectives included the goal of acquiring meteorological observations near the
surface and in close proximity to complex terrain and to provide ground truth data sets to verify
Army high-resolution atmospheric models. As explained earlier, Phase I sensors sampled
traditional meteorological variables at levels that are typically generated by weather forecasting
models output. The 2 atmospheric models considered by the MSA designers for testing model
V&V methods were the Weather Running Estimate-Nowcast (WRE-N), which is a variant of the
Weather Research and Forecasting (WRF) model, and the Three-Dimensional Wind Field
(3DWF) diagnostic model. Both models create output values for the variables on a regularly-
spaced horizontal grid.

MSA meteorological towers were purposefully placed at locations that coincided with the 3DWF
100-m resolution grid points. This design was to minimize the interpolation uncertainty when
determining the modeled value, which corresponds to the location of the measured value. The
3DWF microscale model assimilates a measured wind speed value and the magnitude of the east-
west (u) and north-south (v) wind components from one of the towers, then diagnostically
calculates the corresponding values at all other grid points for the output. Unfortunately, 3DWF
was not available during the field campaign. Consequently, WRE-N was used to investigate the
feasibility of conducting V&V studies.

Assessing the WRE-N performance, whose minimum grid spacing is 1 km, was somewhat
problematic with this 100-m grid design, because the possibility of having grid points
coincidence was almost nonexistent. Furthermore, the typical domain sizes for the 1-km grid
were of the order of 100 km × 100 km, which would require vast numbers of towers to provide
coincident measurements.

Another challenge for the mesoscale model WRE-N was the sampling rate. The measurements
considered appropriate for validating WRE-N were 15-min averaged values. These were
considered to be representative of the model output values that were intended to characterize
conditions in the entire grid cell volume at the specified valid time of the forecast. The vertical,
above ground sensor locations on each tower were specifically chosen to coincide with those of
the WRE-N forecast values, which were at 2- and 10-m AGL.

The WRE-N model output consisted of hourly forecast values of air temperature, dew point
temperature and relative humidity at 2-m AGL, and wind speed, u-component and v-component
wind speeds at 10-m AGL. The forecasts were generated over a 126-km × 126-km horizontal

24

grid domain with spacing of 1 km centered over WSMR and were valid at the top of each hour.
The WRE-N also generated forecasts over larger domains at lower resolutions in a triple-nested
configuration; however, only the output for the innermost nest was used for Phase I.

The MSA surface meteorological observations consisted of u, v, and w wind components
measured at 10-m AGL; at 2-m AGL, sensors measured the air temperature, relative humidity,
solar radiation and atmospheric barometric pressure. The air temperature, relative humidity, wind
measurements provided the needed observation data directly, but the dew point temperature and
mean sea level pressure had to be derived from the sensor data using standard formulae.

The dew point formulae used were provided in the Meteorological Assimilation Data Ingest
System (MADIS) Application Program Interface (API) software (MADIS 2014). These formulae
were implemented into the MSA Data Processing system. Fifteen minute averaged values of the
variables were generated from the merged data produced by the MSA Data Processing system. A
user application reformatted the merged data into the format required by the V&V software used
to calculate the model error statistics. This format was called the MET Specific ASCII Point
Observation format (National Center for Atmospheric Research 2013). The text files in this
format were generated from the data collected 15 min prior to the top of the hour and are valid at
the top of the hour.

9.1 V&V Tools and Preliminary Results

Having the WRE-N model output and the MSA Observations in hand, the next step was to
compare the 2 resources. The tool to do this comparison is described in the next section,
followed by a future data analysis tool.

9.1.1 NCAR MET Point-Stat

The MET is a set of verification tools developed by the WRF Developmental Testbed Center
(DTC) to help WRF Users assess and evaluate the performance of a model (National Center for
Atmospheric Research, 2013). MET Point-Stat is the tool that performs traditional, grid-to-point
model verification and generates error statistics such as Mean Error, Mean Absolute Error, and
Root Mean Square Error. The MET Point-Stat input uses the forecast model output grid in
Gridded Binary (GRIB) format and observations in NetCDF format that have been generated by
converting the ASCII Point Observation formatted text files containing the MSA measurements.
Point-Stat extracts the model value of each variable corresponding with the location of the
observed or measured value using interpolation, because the WRE-N grid points are typically not
located at the observing sites. Point-Stat calculates the difference for every matched forecast-
observation pair and generates the error statistics aggregated over all such pairs at a specific time
in the modeling domain; thus, MET addresses some of the spatial mismatch between the model
and observation grid sizes.

MET Point-Stat can be used to calculate traditional grid-to-point verification statistics for WRE-
N forecasts run for specific case study periods over the WSMR domain. These results would

25

represent aggregated model error statistics. When the 3DWF model becomes available, its output
could also be evaluated using Point-Stat.

The mismatch between model and observation grid sizes is still a concern. Some nontraditional
methods, such as the object-oriented spatial and neighborhood techniques, are being investigated
as potential future assessment tools. A future statistical visualization tool being considered is the
Geographic Information System (GIS), which is described in the next Section.

9.1.2 GIS

Looking toward the future, high-resolution modeling requires more focused spatial and temporal
verification over parts of the domain. With a GIS, researchers can now consider terrain
type/slope and land use effects and other spatial and temporal variables as explanatory metrics in
model assessments. GIS techniques, when coupled with high-resolution point and gridded
observations sets, allow location-based approaches that can facilitate the discovery of spatial and
temporal scales not sufficiently resolved by the model, such as the turbulence effects or
mountain and lee waves. ARL has started a GIS analysis of the matched forecast-observation
pairs that are generated in text format by MET Point-Stat.

Location-based error statistics can be discerned using the GIS analysis tools. These tools are
capable of identifying and codifying “natural” meteorologically and geographically defined
subdomains. They can also be used to develop the means for computing traditional statistics over
these domains to reveal spatial and temporal trends in the performance of the models.

10. Summary and Final Comments

Army decisions can be improved only when the information on which the decisions are based is
improved. Environmentally dependent decisions involving the atmosphere rely heavily on
accurate atmospheric models. “Army-scale” atmospheric models include high-resolution
(<1 km) models. Locating meteorological observations to validate these high-resolution
atmospheric models is very difficult. The NRC recognized this critical technological gap after
they reviewed the US Weather Research, and Researcher–to-Operations progress and priorities
in 2009. Numerous NRC conclusions and recommendations produced by this forum centered on
this void in the atmospheric research community.

ARL has responded to the National and Military need by proposing an observational data
resource specifically designed to address the “Army-scale”, high-resolution atmospheric model
validation and verification issues. The manifested solution is called the “Meteorological Sensor
Array” (MSA).

The MSA vision is built on improving Army decisions by strengthening environmentally-
dependent decision aids through validated high-resolution atmospheric models in the boundary

26

layer. The MSA is intended to provide reliable and persistent data resources that allow
atmospheric modelers and sensor developers to validate and compare model and sensor
performance with atmospheric observations at and near the surface over or in close proximity to
terrain of varying complexity.

The multiphase program was initiated with a “Proof of Concept”, which included 5 equally
spaced meteorological towers around a large Solar PV Farm. Phase II will integrate Phase I
(“Proof of Concept”) lessons learned, as it expands the array into a 36-tower gridded design. The
project location of Phase II is projected to be a mid-valley, desert location. Phase III will mirror
the 36-towers configuration in a climatologically-upwind location with a tall mountain range in
between the two 36-tower arrays. Additional volume measurements will supplement the design.
Phase IV will focus on mobilizing the array with supplemental sampling technology. Phase V is
envisioned as having the capability of participating in remote test site field campaigns.

The MSA Phase I field campaign began with a calibration of all sensors slated for field usage.
Section 2 briefly describes the side-by-side sensor intercomparison configuration and results.
The MSA fielded sensors are listed in Tables 1 and 2.

The MSA Tower design included a portable lightweight aluminum tower, with sensors mounted
on the 2- and 10-m levels. The DAS were divided into 2 categories: Thermodynamic and
Dynamic DAS. A Campbell Scientific CR23X micrologger assimilated the Thermodynamic,
1-min averaged data. The variables consisted of pressure, temperature (2- and 10-m AGL),
relative humidity (2-m AGL) and insolation (2-m AGL). The Dynamic data originated from 2
RM Young 81000 Ultrasonic anemomemters (2- and 10-m AGL) sampling at 20 Hz. The
variables acquired were wind speed, wind direction, u-component, v-component, w-component,
speed of sound and sonic-temperature. The raw dynamic data were preserved in files on a laptop
computer then reduced to 1-min averages. The dynamic and thermodynamic 1-min averages
were merged with the thermodynamic data. A Digi Edgeport RS232 multiport adapter,
supporting 8 serial ports, bridged the 2 data resources. A system clock on each tower was
synchronized using the NTP.

Electrical power for the remotely located towers came from the sun. Each tower was designed
with a solar PV panel, charge controller and battery storage unit, specifically tailored to support
the temporary Phase I tower configuration. The DC electronics received a direct feed from the
battery, whereas, the AC requirements of the computer and wireless adapters (communications)
used an inverter. Future Phases will have reduced electrical tower requirements and, therefore, a
modified power resource design.

The arrival of the Phase I wireless technology was delayed due to bureaucratic approval
processes. Consequently, the initial data flow required a daily “sneaker net” download of data
from each tower, manual maintenance and monitoring of each tower, and a constant time
synchronization check. Once the wireless technology could be installed, these 3 functions were
done automatically, and/or through a remote access. The network configuration brought all data

27

to a single tower, which provided a time server, Ethernet switch, and a wireless adapter link back
to the MSA central computer.

Data processing began with the averaging and merging of thermodynamic and dynamic data.
Plots of the time series of each sensor were created and reviewed, daily. During the few times
technological concerns surfaced, the MSA group immediately addressed and resolved the issues.

Research into automating and improving data quality assurance were investigated. One
suggested improvement was to program quality assurance limits that would automatically flag
potential data issues. Tables framing these limits were given in Section 8. Automating the
intercomparison of neighboring sensors was also suggested.

The MSA design was intended for multiple applications. For Phase I, one of the primary
applications was V&V. As part of the MSA task, the method for executing a high-resolution
model V&V was explored. The mesogamma and microscale models considered were the WRE-
N and 3DWF models. The tower locations and spacing were based on the 3DWF model;
however, the model was not available during the field campaign, so the V&V implementation
was postponed. Instead, the MSA observations were weighed against a WRE-N model output.
Format changes to accommodate both the WRE-N model attributes (spatial and temporal scales)
and the MET statistical tools were developed. Reasonable numerical results were produced
confirming the feasibility of a model grid to observation point comparison. Elaboration and
interpretation of the V&V results were left for a separate report.

Two core goals for the MSA Phase I task were to create a MSA development plan and to
manifest a “Proof of Concept” from which future MSA Phases could be built. This report
sketches the development plan and documents the manifested MSA Phase I “Proof of Concept”.
Based on success of Phase I, the authors look forward to future, fruitful phases.

28

11. References

Bennett DA, Hutchison K, Albers SC, Bornstein RD. Preliminary results from polar-orbiting
satellite data assimilation into LAPS with application to mesoscale modeling of the San
Francisco Bay Area. Preprints, 10th Conference on Satellite Meteorology and Oceanography;
Long Beach, CA. Amer Meteor Soc. 2000; 118–121.

Campbell Scientific, Inc. CR23X micrologger, operator’s manual. Revision: 11/06. Logan, (UT):
Cambell Scientific, Inc.; 2004. Also available at http://www.campbellsci.com/
documents/manuals/retired/cr23x.pdf.

Climatronics Corporation Web site. 10-meter weather station with sonic anemometer and 4–20
mA output. Bohemia, (NY): [accessed 2014 August 27]. http://www.climatronics.com/
pdf/draft_specs/11.pdf.

Fiebrich CA, Morgan CR, McCombs AG. Quality assurance procedures for mesoscale
meteorological data. Journal of Atmospheric and Oceanic Technology. 2010;27(10):1565–
1582.

Fugate GM, Chambers JA. White Sands Missile Range Climate Calendar. White Sands Missile
Range (NM): Atmospheric Science Laboratory (US); April 1972. Also available at
http://www.dtic.mil/dtic/tr/fulltext/u2/743842.pdf.

MADIS Meteorological Assimilation Data Ingest System: National Oceanic and Atmospheric
Administration/Earth Systems Research Laboratory (US). Headquarters, Silver Springs,
(MD); 27 November 2013 [accessed 27 August 2014]. http://madis.noaa.gov.

National Center for Atmospheric Research (NCAR) (US): Developmental Testbed Center (US).
Model evaluation tools user’s guide. Ver. 4.1 (METv4.1). Boulder (CO); 2013.

National Research Council (NRC) (US). When weather matters, science and service to meet
critical societal needs. Washington DC: National Academies Press (US); 2010.

University of Utah, Department of Atmospheric Sciences, Mesowest Region Web page. Salt
Lake City, (UT); 2014. [accessed 27 August 2014] http://mesowest.utah.edu/cgi-bin/droman/
mesomap.cgi?state=NM&rawsflag=3.

Weather Channel, Monthly Average for White Sands Missile Range, NM (88002) Web page.
Atlanta (GA) (US); 2014. [accessed 27 August 2014] http://www.weather.com/weather/
wxclimatology/monthly/88002.

http://www.campbellsci.com/documents/manuals/retired/cr23x.pdf
http://www.campbellsci.com/documents/manuals/retired/cr23x.pdf
http://www.climatronics.com/pdf/draft_specs/11.pdf
http://www.climatronics.com/pdf/draft_specs/11.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/743842.pdf
http://madis.noaa.gov/
http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3
http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?state=NM&rawsflag=3
http://www.weather.com/weather/wxclimatology/monthly/88002
http://www.weather.com/weather/wxclimatology/monthly/88002

29

Appendix A. Meteorological Sensor Array (MSA)-Phase I, CR23X
Micrologger Program

 This appendix appears in its original form, without editorial change.

30

;{CR23X}
;{CR23X} THIS DATALOGGER GOES TO TOWER 4 ON THE EAST SIDE OF THE ARRAY.
;**
; Program: MSA Thermo CAL (4653_MSA.CSI)
; Last Rev. 2014 MAR 05
; POC: Brice
; CMP3 serial # 092102
;**

*Table 1 Program
 01: 5.0000 Execution Interval (seconds)

;**
;PRESSURE SENSOR (PTB-101B - Vaisala) S/N X1720009

1: Do (P86)
 1: 45 Set Port 5 High

2: Excite-Delay (SE) (P4)
 1: 1 Reps
 2: 25 5000 mV, 60 Hz Reject, Fast Range (Delay must be 0)
 3: 7 SE Channel
 4: 3 Excite all reps w/Exchan 3
 5: 100 Delay (0.01 sec units)
 6: 5000 mV Excitation
 7: 1 Loc [Pressure]
 8: .184 Multiplier
 9: 600 Offset

; Pressure transmitter mounts inside the enclosure next to the logger.
; Blue to SE7
; Yellow and Clear to Ground
; Red to 12V
; Green to C5
; Black to Control Ground

3: Do (P86)
 1: 55 Set Port 5 Low

;**
;TEMPERATURE (T107 - Campbell)

4: Temp (107) (P11)
 1: 1 Reps
 2: 1 SE Channel
 3: 21 Excite all reps w/E1, 60Hz, 10ms delay
 4: 2 Loc [TempHi]
 5: 1.0 Multiplier
 6: 0.0 Offset

; One sensor:
; Red to SE1
; Black to EX1
; Purple to Ground
; Clear to Excitation Ground

31

;**
;TEMPERATURE/RH (Rotronic HC2S3 T/RH) S/N 61081155
5: Do (P86)
 1: 49 Turn On Switched 12V

6: Delay w/Opt Excitation (P22)
 1: 2 Ex Channel
 2: 0 Delay W/Ex (0.01 sec units)
 3: 300 Delay After Ex (0.01 sec units)
 4: 0 mV Excitation

; The preceding instruction provides a delay for sensor warm up before
measurement.

7: Volt (SE) (P1)
 1: 1 Reps
 2: 14 1000 mV, Fast Range
 3: 4 SE Channel
 4: 3 Loc [TempVais]
 5: .1 Multiplier
 6: -40 Offset

8: Volt (SE) (P1)
 1: 1 Reps
 2: 14 1000 mV, Fast Range
 3: 3 SE Channel
 4: 4 Loc [Hum]
 5: .1 Multiplier
 6: 0.0 Offset

; The Rotronic HC2S3 sensor.
; White to SE3
; Brown to SE4
; Clear to Ground
; Gray to PW AG
; Green to SW12V
; Yellow to AG

9: Do (P86)
 1: 59 Turn Off Switched 12V
;**
; SOLAR RADIATION (CM3 Pyranometer - Kipp and Zonen)
; Serial Number 092102, C= 10.48 * E-6 V/W/m^2)

10: Delay w/Opt Excitation (P22)
 1: 3 Ex Channel
 2: 0 Delay W/Ex (0.01 sec units)
 3: 15 Delay After Ex (0.01 sec units)
 4: 0 mV Excitation

11: Volt (Diff) (P2)
 1: 1 Reps
 2: 20 Auto, 60 Hz Reject, Slow Range (OS>1.06)
 3: 3 DIFF Channel
 4: 5 Loc [Solar]
 5: 95.419 Multiplier
 6: 0.0 Offset

32

; The Kipp and Zonen CM3 pyranometer.
; White to diff channel 3H
; Black to 3L
; Jumper from 3L to Ground
; Clear to Ground

; Set negative values to zero.

12: If (X<=>F) (P89)
 1: 5 X Loc [Solar]
 2: 4 <
 3: 0 F
 4: 30 Then Do

 13: Z=F x 10^n (P30)
 1: 0 F
 2: 0 n, Exponent of 10
 3: 5 Z Loc [Solar]

14: End (P95)

;**
;BATTERY [Setup uses AC Adapter - Input is 120V @ 60Hz]

15: Batt Voltage (P10)
 1: 6 Loc [BatVolt]

;**
;PANEL TEMPERATURE

16: Panel Temperature (P17)
 1: 7 Loc [PanTemp]

;**
;PROCESSING FUNCTIONS START HERE

17: If time is (P92)
 1: 0 Minutes (Seconds --) into a
 2: 1 Interval (same units as above)
 3: 10 Set Output Flag High (Flag 0)

18: Set Active Storage Area (P80)^19271
 1: 02 Final Storage Area 2
 2: 004 Array ID

19: Real Time (P77)^11358
 1: 1220 Year,Day,Hour/Minute (midnight = 2400) ;

20: Resolution (P78)
 1: 1 High Resolution

21: Average (P71)^3052
 1: 7 Reps
 2: 1 Loc [Pressure]

22: Serial Out (P96)

33

 1: 56 -- Destination Output

23: Serial Out (P96)
 1: 80 Destination Output

*Table 2 Program
 02: 0.0000 Execution Interval (seconds)

*Table 3 Subroutines

End Program

-Input Locations-
1 Pressure 5 1 1
2 TempHi 9 1 1
3 TempVais 1 1 1
4 Hum 1 0 1
5 Solar 1 1 2
6 BatVolt 1 0 1
7 PanTemp 1 0 1
8 _________ 1 0 0
9 _________ 1 0 0
10 _________ 1 0 0
11 _________ 1 0 0
12 _________ 0 0 0
13 _________ 0 0 0
14 _________ 0 0 0
15 _________ 0 0 0
16 _________ 0 0 0
17 _________ 0 0 0
18 _________ 0 0 0
19 _________ 0 0 0
20 _________ 0 0 0
21 _________ 0 0 0
22 _________ 0 0 0
23 _________ 0 0 0
24 _________ 0 0 0
25 _________ 0 0 0
26 _________ 0 0 0
27 _________ 0 0 0
28 _________ 0 0 0
-Program Security-
0000
0000
0000
-Mode 4-
-Final Storage Area 2-
250000
-CR10X ID-
0
-CR10X Power Up-
3
-CR10X Compile Setting-
3
-CR10X RS-232 Setting-
-1

34

-DLD File Labels-
0
-Final Storage Labels-
0,Year_RTM,11358
0,Day_RTM
0,Hour_Minute_RTM
1,Pressure_AVG~1,3052
1,TempHi_AVG~2
1,TempVais_AVG~3
1,Hum_AVG~4
1,Solar_AVG~5
1,BatVolt_AVG~6
1,PanTemp_AVG~7
2,4,19271

35

Appendix B. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge
Logger Program

 This appendix appears in its original form, without editorial change.

36

Code for recording data logger serial output
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <unistd.h>
#include <termios.h>
#include <sys/stat.h>
#include <asm/ioctls.h>
#include <linux/serial.h>
#include <signal.h>
#include <sys/time.h>

#define BAUDRATE B19200
#define FILEDIR "/home/daq/data"

#define FALSE 0
#define TRUE 1
#define SIGNALDIR "/home/daq/data/signals/" // dir for trigger

extern FILE *fopen();
extern int fclose();

int mainloop(FILE*, FILE*, int);
int get_timestamp(char*);
int get_message(FILE*, char*);
int set_ports(char*);
void flush_line(FILE*);
void port_error(char*);
int semaphore(char*, int);
int check_dev(char*);
void set_station(int, char **, int*, int*, int*, char*);
int catoi(char *);

int main(int argc, char* argv[])
{
 int n, rtn, stop, newfile, xx=0, yy=0, sensor_ht=0, TZ=-7, hour, lhr;
 char amline[70], portname[] = "/dev/ttyUSB0", datafilename[50], fileheader[50];
 struct tm *gmt;
 time_t start_time;
 FILE *com_port, *data_file;
 struct stat attributes;

 set_station(argc, argv, &xx, &yy, &sensor_ht, portname);
 printf("%d, %d, %d, %s\n", xx, yy, sensor_ht, portname);

 n = set_ports(portname);
 com_port = fopen(portname,"rw");
 if (com_port == NULL) port_error(portname);

37

//printf("flushing first line\n");
 flush_line(com_port);

 stop = 0;
 while(!stop)
 {
 start_time = time(NULL);
 gmt = gmtime(&start_time);
 lhr = gmt->tm_hour + TZ;
 if(lhr < 0) lhr += 24;
 sprintf(datafilename,"%s/%04d%02d%02d_%02d00_%02d%02d_logger.txt", FILEDIR,
1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_hour, xx, yy);

 sprintf(fileheader,"%04d%02d%02d %03d %02d00 %02d00 %02d:%02d",1900+gmt-
>tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_yday+1, gmt->tm_hour, lhr, xx, yy);

/* sprintf(datafilename,"%s/%04d%02d%02d_%02d%02d_%02d%02d_logger.txt",
FILEDIR, 1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, xx,
yy);
 sprintf(fileheader,"%04d%02d%02d %03d %02d%02d %02d%02d
%02d:%02d",1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_yday+1, gmt->tm_hour,
gmt->tm_min, lhr, gmt->tm_min, xx, yy);*/
// printf("wind file = %s\nheader = %s\n",datafilename, fileheader);

 rtn = stat(datafilename, &attributes);
 if(rtn == 0)
 {
 data_file = fopen(datafilename,"a");
 }
 else
 {
 data_file = fopen(datafilename,"w");
 fprintf(data_file,"%s\n", fileheader);
 }
 fclose(data_file);
 newfile = 0;
 hour = gmt->tm_hour;
//printf("loop start\n");
 while((!newfile) && (!stop))
 {
 data_file = fopen(datafilename,"a");
 newfile = mainloop(com_port, data_file, hour);
 fclose(data_file);
 stop = semaphore("stop_logger", 0);
 if((!newfile) && (!stop)) sleep(58);
 }
 }
printf("logger stopping\n");
return(0);
}

38

int mainloop(FILE *com_port, FILE *wind_file, int start_hr)
{
int rtn, length=0, cs, checksum, n, hr;
char amline[50], timestamp[40];

 hr = get_timestamp(timestamp);
 if (hr == start_hr)
 {
//printf("ts = %s, hr = %d", timestamp, hr);
 get_message(com_port, amline);
//printf("line = %s\n", amline);
// printf("%s %s\n", timestamp, amline);
 fprintf(wind_file, "%s %s\n", timestamp, amline);
 return(0);
 }
 else
 {
// printf("file end\n");
 return(1);
 }
}

void flush_line(FILE *com_port)
{
char line[50];
 get_message(com_port, line);
 sleep(58);
}

int get_message(FILE *port, char *line)
{
 int i, Retry;
 char c;
 i = 0;
 Retry = 0;
//printf("get msg strt:");
 while(!Retry)
 {
 c = '\0';
 c = fgetc(port);
 if (c == '\n')
 {
 line[i] = '\0';
 Retry = 1;
 }
 else
 {
 if (((c > '\037') && (c < '\163')) || (c == 9))
 {
 line[i] = c;
 i++;

39

 }
 }
 }
//printf(" get msg rtn\n");
 return(i);
}

int get_timestamp(char *stamp)
{
 int lhr;
 struct tm *gmt;
 time_t get_time;
 struct timeval tv;
 struct timezone tz;

 gettimeofday(&tv, &tz);
 gmt = gmtime(&(tv.tv_sec));
 if (gmt->tm_hour > 6) lhr = gmt->tm_hour - 7;
 else lhr = gmt->tm_hour + 17;
/* sprintf(stamp,"%02d%02d%02d %02d%02d %02d.%03d",gmt->tm_year-100, 1+gmt->tm_mon,
gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec, tv.tv_usec/1000);*/
 sprintf(stamp,"%02d.%03d", gmt->tm_min*60+gmt->tm_sec, tv.tv_usec/1000);

 return(gmt->tm_hour);
}

void set_station(int argc, char **argv, int* x, int* y, int* h, char* portname)
{
int i,com;

 for (i=1; i < argc; i++)
 {
// printf("stop 1%s\n",argv[i]);

 if ((*argv[i] == 'X')||(*argv[i] == 'x'))
 {
// Setting Site x coord
 *x = catoi(argv[++i]);
 }
 if ((*argv[i] == 'Y')||(*argv[i] == 'y'))
 {
// Setting Site y coord
 *y = catoi(argv[++i]);
 }
 if ((*argv[i] == 'H')||(*argv[i] == 'h'))
 {
// Setting sensor height
 *h = catoi(argv[++i]);
 }
 if ((*argv[i] == 'P')||(*argv[i] == 'p'))
 {

40

// Setting serial port
 com = catoi(argv[++i]);
 if ((com <= 7) && (com >= 0)) portname[11]+=com;
 }
 }
}

int set_ports(char* portname)
{
 int term, r1, r2;
 struct termios set_term;

 term = open(portname, O_RDWR | O_NOCTTY | O_NDELAY);
 if (term == -1) return(-1);

 r1 = ioctl(term,TCGETS,&set_term);
 if (r1 < 0) return(-2);

 set_term.c_cflag = BAUDRATE | CS8 | CREAD | CLOCAL;
 set_term.c_iflag = IGNPAR;
 set_term.c_lflag = 0;

 r2 = ioctl(term,TCSETS,&set_term);
 if (r2 < 0) return(-3);
 close(term); //*/

 return(0);
}

void port_error(char *portname)
{
 printf("%s not available\n",portname);
}

int check_dev(char *portname)
{
struct stat attributes;
int rtn=1; //, n;

 rtn = stat(portname, &attributes);
 if (rtn != 0) return(0);

 return(1);
}

int semaphore(char *signalname, int flag)
{
 int rtn = 0;
 char command[80];
 FILE *flagfile;

41

 if(flag)
 {
// sprintf(command,"echo \"1\" > %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
// printf("%s\n", command);
 flagfile = fopen(command, "w");
 fprintf(flagfile,"1");
 fclose(flagfile);
 rtn = 1;
 }
 else
 {
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 rtn = check_dev(command);
 if(rtn)
 {
// sprintf(command,"rm -f %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 remove(command);
 }
 }

 return(rtn);
}

int catoi(char *string)
{
 int num, pow, sign, i;

 sign = 1;
 pow = 10;
 num = 0;
 for (i = 0; string[i] != '\0'; i++)
 {
 if (string[i] >= '0' && string[i] <= '9')
 {
 if (i == 0)
 num = string[i] - '0';
 else
 num = num * pow + (string[i] - '0');
 }
 else
 {
 if (string[i] == '-')
 sign = -1;
 }
 }
 return (sign * num);
}

42

INTENTIONALLY LEFT BLANK.

43

Appendix C. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge
Sonic Program

 This appendix appears in its original form, without editorial change.

44

Code for recording sonic output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <unistd.h>
#include <termios.h>
#include <sys/stat.h>
#include <asm/ioctls.h>
#include <linux/serial.h>
#include <signal.h>
#include <sys/time.h>

#define BAUDRATE B19200
#define FILEDIR "/home/daq/data"
#define SIGNALDIR "/home/daq/data/signals/" // dir for trigger

#define FALSE 0
#define TRUE 1

extern FILE *fopen();
extern int fclose();

int mainloop(FILE*, FILE*, int);
int get_timestamp(char*);
int get_message(FILE*, char*);
int set_ports(char*);
void flush_line(FILE*);
void port_error(char*);
int semaphore(char*, int);
int check_dev(char*);
void set_station(int, char **, int*, int*, int*, char*);
int catoi(char *);

int main(int argc, char* argv[])
{
 int n, rtn, stop, newfile, xx=0, yy=0, sensor_ht=0, TZ=-7, hour, lhr, offset;
 char amline[70], portname[] = "/dev/ttyUSB0", datafilename[50], fileheader[50], semafile[30],
tst;
 struct tm *gmt;
 time_t start_time;
 FILE *com_port, *data_file;
 struct stat attributes;

 set_station(argc, argv, &xx, &yy, &sensor_ht, portname);
 printf("%d, %d, %d, %s\n", xx, yy, sensor_ht, portname);

 n = set_ports(portname);

45

 sprintf(semafile,"stop_sonic_%02d", sensor_ht);
 com_port = fopen(portname,"rw");
 if (com_port == NULL) port_error(portname);
 flush_line(com_port);

 stop = 0;
 while(!stop)
 {
 start_time = time(NULL);
 gmt = gmtime(&start_time);
 lhr = gmt->tm_hour + TZ;
 if(lhr < 0) lhr += 24;
/* sprintf(datafilename,"%s/%04d%02d%02d_%02d%02d_%02d%02d_%02d_sonic.txt",
FILEDIR, 1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_hour, gmt->tm_min, xx, yy,
sensor_ht);
 sprintf(fileheader,"%04d%02d%02d %03d %02d%02d %02d%02d %02d:%02d
%02d",1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_yday+1, gmt->tm_hour, gmt-
>tm_min, lhr, gmt->tm_min, xx, yy, sensor_ht);*/
 sprintf(datafilename,"%s/%04d%02d%02d_%02d00_%02d%02d_%02d_sonic.txt",
FILEDIR, 1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_hour, xx, yy, sensor_ht);
 sprintf(fileheader,"%04d%02d%02d %03d %02d00 %02d00 %02d:%02d
%02d",1900+gmt->tm_year, 1+gmt->tm_mon, gmt->tm_mday, gmt->tm_yday+1, gmt->tm_hour, lhr,
xx, yy, sensor_ht);
 printf("wind file = %s\nheader = %s\n",datafilename, fileheader);

 rtn = stat(datafilename, &attributes);
 if(rtn == 0)
 {
 data_file = fopen(datafilename,"r+");
 fseek(data_file, -1, SEEK_END);
 offset = 0;
 while(fgetc(data_file) != 10)
 {
 fseek(data_file, -2, SEEK_CUR);
 offset--;
 }
 fseek(data_file, offset, SEEK_END);
 }
 else
 {
 data_file = fopen(datafilename,"w");
 fprintf(data_file,"%s\n", fileheader);
 }
 newfile = 0;
 hour = gmt->tm_hour;
 while((!newfile) && (!stop))
 {
 newfile = mainloop(com_port, data_file, hour);
 stop = semaphore(semafile, 0);
 }
 fclose(data_file);

46

 }
printf("sonic stopping\n");
return(0);
}

int mainloop(FILE *com_port, FILE *wind_file, int start_hr)
{
int rtn, length=0, cs, checksum, n, hr, stop;
char amline[50], timestamp[40];

 hr = get_timestamp(timestamp);
 if (hr == start_hr)
 {
//printf("ts = %s, hr = %d", timestamp, hr);
 get_message(com_port, amline);
//printf("%s\n", amline);
 fprintf(wind_file, "%s %s\n", timestamp, amline);
 return(0);
 }
 else
 {
// printf("file end\n");
 return(1);
 }
}

void flush_line(FILE *com_port)
{
char line[50];
 get_message(com_port, line);
}

int get_message(FILE *port, char *line)
{
 int i, Retry;
 char c;

 i = 0;
 Retry = 0;
 while(!Retry)
 {
 c = '\0';
 c = fgetc(port);
 if ((c == '\r')||(c == '\n'))
 {
 line[i] = '\0';
 Retry = 1;
 }
 else
 {
 if (((c > '\037') && (c < '\163')) || (c == 9))

47

 {
 line[i] = c;
 i++;
 }
 }
 }
 return(i);
}

int get_timestamp(char *stamp)
{
 int lhr;
 struct tm *gmt;
 time_t get_time;
 struct timeval tv;
 struct timezone tz;

 gettimeofday(&tv, &tz);
 gmt = gmtime(&(tv.tv_sec));
 if (gmt->tm_hour > 6) lhr = gmt->tm_hour - 7;
 else lhr = gmt->tm_hour + 17;
/* sprintf(stamp,"%02d%02d%02d %02d%02d %02d.%03d",gmt->tm_year-100, 1+gmt->tm_mon,
gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec, tv.tv_usec/1000);*/
 sprintf(stamp,"%02d.%03d", gmt->tm_min*60+gmt->tm_sec, tv.tv_usec/1000);

 return(gmt->tm_hour);
}

void set_station(int argc, char **argv, int* x, int* y, int* h, char* portname)
{
int i,com;

 for (i=1; i < argc; i++)
 {
 if ((*argv[i] == 'X')||(*argv[i] == 'x'))
 {
// Setting Site x coord
 *x = catoi(argv[++i]);
 }
 if ((*argv[i] == 'Y')||(*argv[i] == 'y'))
 {
// Setting Site y coord
 *y = catoi(argv[++i]);
 }
 if ((*argv[i] == 'H')||(*argv[i] == 'h'))
 {
// Setting sensor height
 *h = catoi(argv[++i]);
 }
 if ((*argv[i] == 'P')||(*argv[i] == 'p'))
 {

48

// Setting serial port
 com = catoi(argv[++i]);
 if ((com <= 7) && (com >= 0)) portname[11]+=com;
 }
 }
}

int set_ports(char* portname)
{
 int term, r1, r2;
 struct termios set_term;

 term = open(portname, O_RDWR | O_NOCTTY | O_NDELAY);
 if (term == -1) return(-1);

 r1 = ioctl(term,TCGETS,&set_term);
 if (r1 < 0) return(-2);

 set_term.c_cflag = BAUDRATE | CS8 | CREAD | CLOCAL;
 set_term.c_iflag = IGNPAR;
 set_term.c_lflag = 0;

 r2 = ioctl(term,TCSETS,&set_term);
 if (r2 < 0) return(-3);
 close(term); //*/

 return(0);
}

void port_error(char *portname)
{
 printf("%s not available\n",portname);
}

int check_dev(char *portname)
{
struct stat attributes;
int rtn=1; //, n;

 rtn = stat(portname, &attributes);
 if (rtn != 0) return(0);

 return(1);
}

int semaphore(char *signalname, int flag)
{
 int rtn = 0;
 char command[80];
 FILE *flagfile;

49

 if(flag)
 {
// sprintf(command,"echo \"1\" > %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 printf("%s\n", command);
 flagfile = fopen(command, "w");
 fprintf(flagfile,"1");
 fclose(flagfile);
 rtn = 1;
 }
 else
 {
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 rtn = check_dev(command);
 if(rtn)
 {
// sprintf(command,"rm -f %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 remove(command);
 }
 }
//printf("semaphore returns %d", rtn);
 return(rtn);
}

int catoi(char *string)
{
 int num, pow, sign, i;

 sign = 1;
 pow = 10;
 num = 0;
 for (i = 0; string[i] != '\0'; i++)
 {
 if (string[i] >= '0' && string[i] <= '9')
 {
 if (i == 0)
 num = string[i] - '0';
 else
 num = num * pow + (string[i] - '0');
 }
 else
 {
 if (string[i] == '-')
 sign = -1;
 }
 }
 return (sign * num);
}

50

INTENTIONALLY LEFT BLANK.

51

Appendix D. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge
Averaging Program

 This appendix appears in its original form, without editorial change.

52

Code for 1 minute averages
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <unistd.h>
#include <termios.h>
#include <sys/stat.h>
#include <asm/ioctls.h>
#include <linux/serial.h>
#include <signal.h>
#include <sys/time.h>

#define BAUDRATE B19200
#define FILEDIR "/home/daq/data"

#define FALSE 0
#define TRUE 1
#define SIGNALDIR "/home/daq/data/signals/" // dir for trigger
#define LOGFILE "/home/daq/data/logs/datalog" // data management log file
#define INFOFILE "/home/daq/data/logs/info" // data management log file

extern FILE *fopen();
extern int fclose();

int get_timestamp(char*);
int process_all(long, int, int, int, char*);
int process_logger(char*);
int process_sonic(int, char*);
int merge_process(char*);
int semaphore(char*, int);
int check_dev(char*);

int main(int argc, char* argv[])
{
 int n, stop, newfile, xx=5, yy=5, sensor_ht=0, TZ=-7, hour, lhr, day, month, filetime;
 char datafilemove[120], datafilecheck[120], mknewdir[80], date[25], ts[30], newdir[70],
fileroot[50];
 long startdate;
 struct tm *gmt;
 time_t start_time;
 FILE *logfile, *infofile;
 struct stat attributes;

 start_time = time(NULL);
 gmt = gmtime(&start_time);
 lhr = gmt->tm_hour + TZ;
 hour = gmt->tm_hour-1;

53

 day = gmt->tm_mday;
 month = 1+gmt->tm_mon;
 if(hour < 0)
 {
 hour += 24;
 day -= 1;
 if (day == 0)
 {
 month -= 1;
 if(month == 4) day == 30;
 else day = 31;
 }
 }
 startdate = (1900+gmt->tm_year)*10000+month*100+day;
 filetime = hour*100;
 sprintf(fileroot, "/home/daq/data/");

 get_timestamp(ts);
 sprintf(date, "%04d%02d%02d", 1900+gmt->tm_year, month, day);
 sprintf(newdir,"%s/%s", FILEDIR, date);
 sprintf(mknewdir,"mkdir %s", newdir);

 sprintf(datafilemove,"mv %s_%02d* %s", newdir, hour, newdir);

 if(check_dev(newdir) == 0) system(mknewdir);
 system(datafilemove);

// sprintf(datafilemove,"ls %s_%02d00_* > ", newdir, hour, newdir);
 infofile = fopen(INFOFILE,"r");
 fscanf(infofile, "%02d%02d", &xx, &yy);
 fclose(infofile);

 process_all(startdate, filetime, xx, yy, fileroot);
 logfile = fopen(LOGFILE,"a");
 fprintf(logfile,"%s: %s moved\n", ts, date);
 fclose(logfile);

return(0);
}

int get_timestamp(char *stamp)
{
 int lhr;
 struct tm *gmt;
 time_t get_time;
 struct timeval tv;
 struct timezone tz;

 gettimeofday(&tv, &tz);
 gmt = gmtime(&(tv.tv_sec));
 if (gmt->tm_hour > 6) lhr = gmt->tm_hour - 7;

54

 else lhr = gmt->tm_hour + 17;
 sprintf(stamp,"%02d%02d%02d %02d%02d %02d.%03d",gmt->tm_year-100, 1+gmt->tm_mon,
gmt->tm_mday, gmt->tm_hour, gmt->tm_min, gmt->tm_sec, tv.tv_usec/1000);
// sprintf(stamp,"%02d.%03d", gmt->tm_min*60+gmt->tm_sec, tv.tv_usec/1000);

 return(gmt->tm_hour);
}

int process_all(long startdate, int filetime, int xx, int yy, char *fileroot)
{
int rtn, level, missing=0;
char filebase[60], sonicfile[80], loggerfile[80];
struct stat attributes;

 sprintf(filebase,"%s%08d/%08d_%04d_%02d%02d", fileroot, startdate, startdate, filetime, xx,
yy);

 for (level=0;level<2;level++)
 {
 sprintf(sonicfile,"%s_%02d_sonic.txt", filebase, level*8+2);
 rtn = stat(sonicfile, &attributes);
 if(!rtn) process_sonic(level*8+2, filebase);
 else
 {
 printf("%s missing\n", sonicfile);
 missing++;
 }
 }

 sprintf(loggerfile,"%s_logger.txt", filebase);
 rtn = stat(loggerfile, &attributes);
 if(!rtn) process_logger(filebase);
 else
 {
 printf("%s missing\n", loggerfile);
 missing++;
 }

 if(!missing) merge_process(filebase);

 return(1);
}

int merge_process(char *filebase)
{
FILE *logger, *sonic2, *sonic10, *output;
int err2, err10, ftime, day, min, ht2, xx, yy, alt=0;
float press, rh, volt, panel_temp, log_second, t2, t10, solar;

55

float ws2, wd2, ws10, wd10, u2, v2, w2, u10, v10, w10, ts2, ts10, c_2, c_10, hr2, hr10, lhr2, lhr10, hr0,
lhr0;
double lat=0, lon=0;
char logfile[50], mergefile[80], sonicfile2[80], sonicfile10[80], tower[9];
long date;
//time_t utime;
//struct tm *ltime;

 sprintf(sonicfile2,"%s_02_sonic.avg.txt", filebase);
 sprintf(sonicfile10,"%s_10_sonic.avg.txt", filebase);
// sprintf(logfile,"%s_logger.txt", filebase);
 sprintf(logfile,"%s_logger.avg.txt", filebase);
 sprintf(mergefile,"%s_merged.txt", filebase);
 logger=fopen(logfile,"r");
 sonic2=fopen(sonicfile2,"r");
 sonic10=fopen(sonicfile10,"r");
 output=fopen(mergefile,"w");
 fscanf(logger,"%*d%*d%*d%*d%2d:%2d", &xx, &yy);
 if(xx == 3)
 {
 lat = 32.3958;
 lon = -106.4729;
 alt = 1286;
 }
 if(xx == 2)
 {
 lat = 32.3959;
 lon = -106.4740;
 alt = 1287;
 }
 if(xx == 1)
 {
 if(yy == 1)
 {
 lat = 32.3949;
 lon = -106.4825;
 alt = 1306;
 }
 if(yy == 2)
 {
 lat = 32.3957;
 lon = -106.4825;
 alt = 1308;
 }
 if(yy == 3)
 {
 lat = 32.3966;
 lon = -106.4825;
 alt = 1307;
 }
// if(yy == 4) lat = 99.9999;

56

 }
 fscanf(sonic2,"%ld%d%d%*d%s%d", &date, &day, &ftime, tower, &ht2);
 fscanf(sonic10,"%*d%*d%*d%*d%*s%*d");
 fprintf(output,"%08d %03d %04d -7 %02d:%02d %7.4f %9.4f %d\n", date, day, ftime,
xx, yy, lat, lon, alt);
 for (min=0;min<60;min++)
 {
// fscanf(logger,"%f%*d,%*d,%*d,%*d,%f,%f,%f,%f,%f,%f,%f", &log_second,
&press, &t10, &t2, &rh, &solar, &volt, &panel_temp);
 fscanf(logger,"%f%f%f%f%f%f%f%f", &log_second, &press, &t10, &t2, &rh,
&solar, &volt, &panel_temp);
 fscanf(sonic2,"%f%f%f%f%f%f%f%f%f%d", &hr2, &lhr2, &ws2, &wd2, &u2,
&v2, &w2, &ts2, &c_2, &err2);
 fscanf(sonic10,"%f%f%f%f%f%f%f%f%f%d", &hr10, &lhr10, &ws10, &wd10,
&u10, &v10, &w10, &ts10, &c_10, &err10);
 hr0 = hr2;
 lhr0 = lhr2;
 fprintf(output,"%6.3f %6.3f %6.3f %7.3f %8.3f %6.3f %5.2f %5.1f %5.2f %5.2f
%5.2f %5.2f %6.2f %4d ", hr0, lhr0,
 press, rh, solar, t2, ws2, wd2, u2, v2, w2, ts2, c_2, err2);
 fprintf(output,"%6.3f %5.2f %5.1f %5.2f %5.2f %5.2f %5.2f %6.2f %4d %6.3f
%6.3f\n", t10, ws10, wd10, u10, v10, w10, ts10, c_10, err10, volt, panel_temp);
 }
 fclose(sonic2);
 fclose(sonic10);
 fclose(logger);
 fclose(output);
 return(1);
}

int process_sonic(int hh, char *filebase)
{
FILE *input, *output;
int sample, errsum, min, min_start, rtn, lhr, uhr, height, day, invalid;
float tstamp;
long date;
double t_sum, u_sum, v_sum, w_sum, c_sum, u, v, w, temp, c, u_avg, v_avg, w_avg, t_avg, c_avg,
ws_avg, wd_avg, sd_sum=0;
char input_filename[70], output_filename[70], err[10], tower[6];

 sprintf(input_filename,"%s_%02d_sonic.txt",filebase, hh);
 sprintf(output_filename,"%s_%02d_sonic.avg.txt",filebase, hh);
 input=fopen(input_filename,"r");
 output=fopen(output_filename,"w");
 fscanf(input,"%ld%d%d%d%s%d", &date, &day, &uhr, &lhr, tower, &height);
// day = 71; // temp date fix
// fscanf(input,"%ld%d%d%s%d", &date, &uhr, &lhr, tower, &height);
 fprintf(output,"%08d %03d %04d %04d %s %02d\n", date, day, uhr, lhr, tower, height);
 uhr/=100;
 lhr/=100;
 min_start = 0;

57

 min = 0;
 u_sum = 0;
 v_sum = 0;
 w_sum = 0;
 t_sum = 0;
 c_sum = 0;
 errsum = 0;
 sample = 0;

 rtn = fscanf(input,"%f%lf%lf%lf%lf%lf%s", &tstamp, &u, &v, &w, &temp, &c, err);
 while(rtn != EOF)
 {
 min = (int)tstamp/60;
 if(min > min_start)
 {
 if(sample > 0)
 {
 u_avg = -1. * u_sum / sample;
 v_avg = -1. * v_sum / sample;
 w_avg = w_sum / sample;
 t_avg = t_sum / sample;
 c_avg = c_sum / sample;
 u_sum = 0;
 v_sum = 0;
 w_sum = 0;
 t_sum = 0;
 c_sum = 0;
 ws_avg = pow((u_avg*u_avg)+(v_avg*v_avg), 0.5);
 if(v_avg == 0)
 {
 if(u_avg > 0) wd_avg = 270;
 else wd_avg = 90;
 }
 else
 {
 wd_avg = atan(u_avg/v_avg)*180/3.1416;
 if(v_avg > 0) wd_avg += 180;
 else if(u_avg > 0) wd_avg += 360;
 }
 fprintf(output, "%6.3f %6.3f %6.2f %5.1f %6.2f %6.2f %6.2f %6.2f
%6.2f %4d\n", (float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60,
 ws_avg, wd_avg, u_avg, v_avg, w_avg, t_avg, c_avg, errsum);
 }
 else fprintf(output, "%6.3f %6.3f -99.99 -99.9 -99.99 -99.99 -99.99 -99.99 -99.99
%4d\n", (float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60, errsum);

 if(min > min_start+1)
 {
 while(min > ++min_start) fprintf(output, "%6.3f %6.3f -99.99 -99.9 -
99.99 -99.99 -99.99 -99.99 -99.99 %4d\n",
 (float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60, 0);

58

 }

 sample = 0;
 errsum = 0;
 min_start = min;
 }
 invalid = strcmp(err, "0");
 if(invalid) errsum++;
 else
 {
 sample++;
 u_sum += u;
 v_sum += v;
 w_sum += w;
 t_sum += temp;
 c_sum += c;
 }
 rtn = fscanf(input,"%f%lf%lf%lf%lf%lf%s", &tstamp, &u, &v, &w, &temp, &c, err);
 }

 if(sample > 0)
 {
 u_avg = -1. * u_sum / sample;
 v_avg = -1. * v_sum / sample;
 w_avg = w_sum / sample;
 t_avg = t_sum / sample;
 c_avg = c_sum / sample;
 u_sum = 0;
 v_sum = 0;
 w_sum = 0;
 t_sum = 0;
 c_sum = 0;
 ws_avg = pow((u_avg*u_avg)+(v_avg*v_avg), 0.5);
 if(v_avg == 0)
 {
 if(u_avg > 0) wd_avg = 270;
 else wd_avg = 90;
 }
 else
 {
 wd_avg = atan(u_avg/v_avg)*180/3.1416;
 if(v_avg > 0) wd_avg += 180;
 else if(u_avg > 0) wd_avg += 360;
 }
 fprintf(output, "%6.3f %6.3f %6.2f %5.1f %6.2f %6.2f %6.2f %6.2f %6.2f %4d\n",
(float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60,
 ws_avg, wd_avg, u_avg, v_avg, w_avg, t_avg, c_avg, errsum);
 }
 else if(min_start < 60) fprintf(output, "%6.3f %6.3f -99.99 -99.9 -99.99 -99.99 -99.99 -99.99 -
99.99 %4d\n",
 (float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60, errsum);

59

 while(++min_start < 60) fprintf(output, "%6.3f %6.3f -99.99 -99.9 -99.99 -99.99 -99.99 -99.99 -
99.99 %4d\n",
 (float)uhr+(float)min_start/60, (float)lhr+(float)min_start/60, 0);

 fclose(input);
 fclose(output);

 return(1);
}

int process_logger(char *filebase)
{
FILE *input, *output;
int sample, min, min_start, rtn, lhr, uhr, day;
float press, rh, volt, panel_temp, log_second, t2, t10, solar;
float press_sum, rh_sum, volt_sum, panel_temp_sum, t2_sum, t10_sum, solar_sum;
float press_avg, rh_avg, volt_avg, panel_temp_avg, t2_avg, t10_avg, solar_avg;
long date;
char input_filename[80], output_filename[80], tower[6];

 sprintf(input_filename,"%s_logger.txt",filebase);
 sprintf(output_filename,"%s_logger.avg.txt",filebase);
 input=fopen(input_filename,"r");
 output=fopen(output_filename,"w");
 fscanf(input,"%ld%d%d%d%s", &date, &day, &uhr, &lhr, tower);
 fprintf(output,"%08d %03d %04d %04d %s\n", date, day, uhr, lhr, tower);
 uhr/=100;
 lhr/=100;
 min_start = 0;
 min = 0;
 press_sum = 0;
 t10_sum = 0;
 t2_sum = 0;
 rh_sum = 0;
 solar_sum = 0;
 volt_sum = 0;
 panel_temp_sum = 0;
 sample=0;

 rtn = fscanf(input,"%f%*d,%*d,%*d,%*d,%f,%f,%f,%f,%f,%f,%f", &log_second, &press, &t10,
&t2, &rh, &solar, &volt, &panel_temp);
 while(rtn != EOF)
 {
 min = (int)log_second/60;
 if(min > min_start)
 {
 if(sample > 0)
 {
 press_avg = press_sum / sample;
 t10_avg = t10_sum / sample;

60

 t2_avg = t2_sum / sample;
 rh_avg = rh_sum / sample;
 solar_avg = solar_sum / sample;
 volt_avg = volt_sum / sample;
 panel_temp_avg = panel_temp_sum / sample;
 press_sum = 0;
 t10_sum = 0;
 t2_sum = 0;
 rh_sum = 0;
 solar_sum = 0;
 volt_sum = 0;
 panel_temp_sum = 0;

 if(press_avg == 0.) press_avg = (float)-99.999;

 fprintf(output, "%6.3f %7.3f %7.3f %7.3f %7.3f %8.3f %6.3f %6.3f\n",
(float)uhr+(float)min_start/60,
 press_avg, t10_avg, t2_avg, rh_avg, solar_avg, volt_avg,
panel_temp_avg);
 }
 else fprintf(output, "%6.3f -99.999 -99.999 -99.999 -99.999 -999.999 -9.999 -
9.999\n", (float)uhr+(float)min_start/60);

 if(min > min_start+1)
 {
 while(min > ++min_start) fprintf(output, "%6.3f -99.999 -99.999 -99.999
-99.999 -999.999 -9.999 -9.999\n",
 (float)uhr+(float)min_start/60);
 }

 sample = 0;
 min_start = min;
 }

 press_sum += press;
 t10_sum += t10;
 t2_sum += t2;
 rh_sum += rh;
 solar_sum += solar;
 volt_sum += volt;
 panel_temp_sum += panel_temp;
 sample++;

 rtn = fscanf(input,"%f%*d,%*d,%*d,%*d,%f,%f,%f,%f,%f,%f,%f", &log_second,
&press, &t10, &t2, &rh, &solar, &volt, &panel_temp);
 }

 if(sample > 0)
 {
 press_avg = press_sum / sample;
 t10_avg = t10_sum / sample;

61

 t2_avg = t2_sum / sample;
 rh_avg = rh_sum / sample;
 solar_avg = solar_sum / sample;
 volt_avg = volt_sum / sample;
 panel_temp_avg = panel_temp_sum / sample;
 press_sum = 0;
 t10_sum = 0;
 t2_sum = 0;
 rh_sum = 0;
 solar_sum = 0;
 volt_sum = 0;
 panel_temp_sum = 0;
 if(press_avg == 0.) press_avg = (float)-99.999;

 fprintf(output, "%6.3f %7.3f %7.3f %7.3f %7.3f %8.3f %6.3f %6.3f\n",
(float)uhr+(float)min_start/60,
 press_avg, t10_avg, t2_avg, rh_avg, solar_avg, volt_avg, panel_temp_avg);
 }
 else if(min_start < 60) fprintf(output, "%6.3f -99.999 -99.999 -99.999 -99.999 -999.999 -9.999 -
9.999\n", (float)uhr+(float)min_start/60);

 while(++min_start < 60) fprintf(output, "%6.3f -99.999 -99.999 -99.999 -99.999 -999.999 -9.999
-9.999\n", (float)uhr+(float)min_start/60);

 fclose(input);
 fclose(output);

 return(1);
}

int check_dev(char *portname)
{
struct stat attributes;
int rtn=1; //, n;

 rtn = stat(portname, &attributes);
 if (rtn != 0) return(0);

 return(1);

}

/*
int semaphore(char *signalname, int flag)
{
 int rtn = 0;
 char command[80];
 FILE *flagfile;

 if(flag)

62

 {
// sprintf(command,"echo \"1\" > %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 printf("%s\n", command);
 flagfile = fopen(command, "w");
 fprintf(flagfile,"1");
 fclose(flagfile);
 rtn = 1;
 }
 else
 {
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 rtn = check_dev(command);
 if(rtn)
 {
// sprintf(command,"rm -f %s%s\n", SIGNALDIR, signalname);
// system(command);
 sprintf(command,"%s%s", SIGNALDIR, signalname);
 remove(command);
 }
 }

 return(rtn);
}*/

63

Appendix E. Data Management Program – Meteorological Sensor Array
(MSA)_Mountain Standard Time (MST)_Automate.vbs

 This appendix appears in its original form, without editorial change.

64

The MSA_MST_Automate.vbs program calls MSA_QC_MST.gle to create midnight to midnight
MST time data displays for first level MSA tower data quality control. This program also takes
the 1-h MSA Tower Data files over a 24-h (or more) period and assembles them into single
24-h (or more) file in UTC. The program also archives to disk the jpg image of the plots page for
each tower. The program does this process for 2 consecutive days creating a page of plots for
each tower, for each day.

' PROGRAM: MSA_MST_Automate.vbs
' AUTHOR: O'Brien / Harrison
' Last Rev: 140605, sh
'
' PURPOSE: This program calls MSA_QC_MST.gle to create midnight to midnight MST time data displays for Quality Control of
‘MSA Tower Data. This program ‘also takes the MSA Tower Data of one hour files over 24 or more hours and assembles them into 24
‘hour file(s) for UTC. It also archives to disk the jpg image of the ‘plots page for each tower. The program does this process for two
‘consecutive days creating a page of plots for each tower for each day.

Dim archiveMSTFileString
Dim gleFileString
Dim sourceFileString
Dim lastFileString
Dim FSO
Dim sourceFile
Dim archiveMSTFile
Dim gleFile
Dim currentLineNumber

Dim yearStringFirst
Dim monStringFirst
Dim dayStringFirst
Dim utcStringFirst
Dim mstStringFirst
Dim yearStringLast
Dim monStringLast
Dim dayStringLast
Dim utcStringLast
Dim mstStringLast
Dim utcString
Dim towerString

Dim GLE_QC_UTCScript
Dim GLE_QC_MSTScript
Dim GLE_ProgramPath
Dim GLEScriptRunStringUTC
Dim GLEScriptRunStringMST
Dim GLE_Exec_UTC
Dim GLE_Exec_MST

Const ForReading = 1, ForWriting = 2, ForAppending = 8

set FSO = CreateObject("Scripting.FileSystemObject")
set WshShell = CreateObject("WScript.Shell")

rootPath = "C:\MSA\MSA_POST-PoC_Exercise\"
'archivePath = "MSA_Archive\MSA_DateMerged\"
dataPath = "MSA_Data\"
applicationsPath = "MSA_Applications\"
plotsPath = "MSA_Plots\"
LDriveRootPath = "L:\MSA_POST-PoC_Exercise\"
gleFileStringMaster = rootPath & dataPath & "MSA_24hr_GLE_Data.txt"

YMD = InputBox("Enter YEAR/MONTH/DAY of Data Files in Format (YYMMDD):", "MST")
If YMD="" Then

65

 WScript.Quit
End If
YMDFirst = YMD

yearString = Left(YMD, 2)
monString = Mid(YMD, 3, 2)
dayString = Mid(YMD, 5, 2)
numTowers = 5
towerString = Array("0101", "0102", "0202", "0302", "0103")
utcString = "07"
yearStringFirst = yearString
monStringFirst = monString
dayStringFirst = dayString

'*** copy LDrive directory of data YMD to working area data dir ***
LDriveDataDirString = LDriveRootPath & dataPath & YMD & "merged"
FSO.CopyFolder LDriveDataDirString, rootPath & dataPath, True

'*** Need to get Julian Day from data file so can calculate YMD of next day to be able to copy directory of data of next day ***
For i = 0 To numTowers-1
 LDriveDataFileString = LDriveDataDirString & "\20" & yearString & monString & dayString & "_" & utcString & "00" & "_" &
towerString(i) & "_merged.txt"
 If FSO.FileExists(LDriveDataFileString) Then
 set LDriveDataFile = FSO.OpenTextFile(LDriveDataFileString, ForReading, True)
 'MsgBox("LDriveDataFile: " & LDriveDataFileString)
 i = numTowers-1
 Else
 'MsgBox("WARNING: L Drive Data File Not Found" & LDriveDataFileString)
 'WScript.Quit
 End If
Next

FirstLine = LDriveDataFile.ReadLine
julianDayString = Mid(FirstLine, 10, 3)
LDriveDataFile.close

julianDayString = CStr(CInt(julianDayString)+1)
return = YMDFromJulian(yearString, monString, dayString, Int(julianDayString))
YMD = yearString & monString & dayString

'*** copy LDrive directory of data of next day to working area data dir ***
'MsgBox("Next Day " & YMD)
LDriveDataDirString = LDriveRootPath & dataPath & YMD & "merged"
FSO.CopyFolder LDriveDataDirString, rootPath & dataPath, True

gleFileOpen = 0

For k = 0 To 1 '*** For two days of generating plots - one full 24hr day and next day partial ***

 For i = 0 To numTowers-1

 utcString = "07"
 dayString = dayStringFirst
 monString = monStringFirst
 yearString = yearStringFirst
 YMD = YMDFirst
 TowerDataFiles = False

 For j = 0 To 23

 '*** Open hourly sensor merged data files ***
 Continue = True
 sourceFileString = rootPath & dataPath & YMD & "merged\20" & yearString & monString & dayString & "_" & utcString & "00" &
"_" & towerString(i) & "_merged.txt"
 gleFileString = rootPath & "MSA_Data\MSA_24hr_GLE_Data_" & towerString(i) & ".txt"
 If FSO.FileExists(sourceFileString) Then

66

 set sourceFile = FSO.OpenTextFile(sourceFileString, ForReading, True)
 'MsgBox("Data File: " & sourceFileString)
 TowerDataFiles = True
 Else
 'MsgBox("WARNING: File Not Found" & sourceFileString)
 'WScript.Quit
 Continue = False
 End If

 '*** Merge all hourly files into one ***
 If Continue = True Then
 If gleFileOpen = 0 Then
 set gleFile = FSO.OpenTextFile(gleFileString, ForWriting, True)
 gleFileOpen = 1
 Else
 gleFile.close
 set gleFile = FSO.OpenTextFile(gleFileString, ForAppending, True)
 gleFileOpen = 1
 End If

 currentLineNumber = 0

 Do While Not(sourceFile.AtEndofStream)
 currentLineNumber = currentLineNumber + 1
 currentLine = sourceFile.ReadLine
 If currentLineNumber = 1 Then
 julianDayString = Mid(currentLine, 10, 3)
 gleFile.WriteLine("!" & currentLine)
 Else
 gleFile.WriteLine(currentLine)
 End If
 Loop
 sourceFile.close

 End If '*** Continue ***

 '*** Set variables so we have the correct file name and directory of next hourly file to read ***
 utcString = CStr(CInt(utcString)+1)
 utcString = string(2 - Len(utcString), "0") & utcString
 If utcString = "24" Then
 utcString = "00"

 If TowerDataFiles = True Then '*** If no data files to read julian day from, then use julian day from previous tower file
which has already been incremented to next day ***
 julianDayString = CStr(CInt(julianDayString)+1)
 End If

 return = YMDFromJulian(yearString, monString, dayString, Int(julianDayString))
 YMD = yearString & monString & dayString
 'MsgBox("Next day: " & yearString & monString & dayString)
 End If

 Next '***For Loop Hour (j) ***

 If TowerDataFiles = True Then

 '*** Set dir and file name for archiving ***
 'If Not FSO.FolderExists(rootPath & archivePath & YMDFirst) Then
 ' FSO.CreateFolder(rootPath & archivePath & YMDFirst)
 'End If
 'archiveMSTFileString = rootPath & archivePath & YMDFirst & "\MSA_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".txt"
 'FSO.CopyFile gleFileString, archiveMSTFileString, True
 FSO.CopyFile gleFileString, gleFileStringMaster, True

 '*** Set up and call GLE script also archive jpg image of plot ***
 GLE_QC_MSTScript = rootPath & applicationsPath & "MSA_QC_MST.gle"
 GLE_ProgramPath = "C:\LRx\Programs\GLE4\bin\gle "

67

 'QGLE_ProgramPath = "C:\LRx\Programs\GLE4\bin\qgle "
 'QGLEScriptRunStringMST = QGLE_ProgramPath & GLE_QC_MSTScript
 'Set QGLE_Exec_MST = WshShell.Exec(QGLEScriptRunStringMST)

 GLEScriptRunStringMST = GLE_ProgramPath & "-d jpg " & GLE_QC_MSTScript
 Set GLE_Exec_MST = WshShell.Exec(GLEScriptRunStringMST)

 GLEScriptRunStringMST = GLE_ProgramPath & "/preview " & GLE_QC_MSTScript
 Set GLE_Exec_MST = WshShell.Exec(GLEScriptRunStringMST)

 jpgFileString = rootPath & applicationsPath & "MSA_QC_MST.jpg"
 jpgFileArchiveString = rootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".jpg"

 Do While (Not FSO.FileExists(jpgFileString))
 Wscript.sleep(10000)
 Loop

 If FSO.FileExists(jpgFileString) Then
 If Not FSO.FolderExists(rootPath & plotsPath & YMDFirst) Then
 FSO.CreateFolder(rootPath & plotsPath & YMDFirst)
 End If
 Wscript.Echo(jpgFileArchiveString)
 FSO.CopyFile jpgFileString, jpgFileArchiveString, True
 FSO.DeleteFile jpgFileString, True

 ' *** Delete No data found txt file from previous day if exists, ie Tower has changed states to working ***
 plotsNoDataFileString = rootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst & monStringFirst
& dayStringFirst & "_" & TowerString(i) & ".txt"
 If FSO.FileExists(plotsNoDataFileString) Then
 FSO.DeleteFile plotsNoDataFileString, True
 'MsgBox("plotsNoDataFileString to delete=" & plotsNoDataFileString)
 End If

 LDrivePlotsFileString = LDriveRootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst &
monStringFirst & dayStringFirst & "_" & TowerString(i) & ".txt"
 If FSO.FileExists(LDrivePlotsFileString) Then
 FSO.DeleteFile LDrivePlotsFileString, True
 End If
 End If

 If gleFileOpen = 1 Then
 gleFile.close
 FSO.DeleteFile gleFileString, True
 gleFileOpen = 0
 End If

 If i <> 4 Then
 MsgBox("Are you ready to plot Tower " & i+2 & "?")
 End If

 Else '*** If not data then create "NO DATA" text file for data and plots archive ***
 MsgBox("No Data for Tower " & i+1 & " - " & YMDFirst)

 If Not FSO.FolderExists(rootPath & plotsPath & YMDFirst) Then
 FSO.CreateFolder(rootPath & plotsPath & YMDFirst)
 End If
 plotsNoDataFileString = rootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".txt"
 set plotsNoDataFile = FSO.OpenTextFile(plotsNoDataFileString, ForWriting, True)
 plotsNoDataFile.WriteLine("No Data Files were Found.")
 plotsNoDataFile.close

 ' *** Delete jpg file if one exists from both C and L Drive ***
 jpgFileArchiveString = rootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".jpg"

68

 LDrivePlotsFileString = LDriveRootPath & plotsPath & YMDFirst & "\MSA_Plots_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".jpg"

 If FSO.FileExists(jpgFileArchiveString) Then
 FSO.DeleteFile jpgFileArchiveString, True
 'MsgBox("jpgFileArchiveString to delete=" & jpgFileArchiveString)
 End If
 If FSO.FileExists(LDrivePlotsFileString) Then
 FSO.DeleteFile LDrivePlotsFileString, True
 End If

 'If Not FSO.FolderExists(rootPath & archivePath & YMDFirst) Then
 ' FSO.CreateFolder(rootPath & archivePath & YMDFirst)
 'End If
 'archiveNoDataFileString = rootPath & archivePath & YMDFirst & "\MSA_MST_" & yearStringFirst & monStringFirst &
dayStringFirst & "_" & TowerString(i) & ".txt"
 'set archiveNoDataFile = FSO.OpenTextFile(archiveNoDataFileString, ForWriting, True)
 'archiveNoDataFile.WriteLine("No Data Files were Found.")
 'archiveNoDataFile.close

 End If '*** If TowerDataFiles ***

 Next '***For Loop Tower (i) ***

 LDrivePlotsDirString = LDriveRootPath & plotsPath
 FSO.CopyFolder rootPath & plotsPath & YMDFirst, LDrivePlotsDirString, True

 If k < 1 Then
 MsgBox("Are you ready to plot Tower 1 for " & YMD & "?")
 YMDFirst = YMD
 dayStringFirst = dayString
 monStringFirst = monString
 yearStringFirst = yearString
 End If

Next '*** For Loop YMD and YMD+1 to plot data (k) ***

69

Function YMDFromJulian(ByRef yearString, ByRef monString, ByRef dayString, ByVal JulianDay)

yearRatio = CInt(yearString) / 4.0
yearRemainder = yearRatio - Int(yearRatio)

If (yearRemainder > 0.1) Then
'Non-leap year
 If (JulianDay >= 1) And (JulianDay <= 31) Then
 monString = "01"
 dayString = CStr(JulianDay)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 32) And (JulianDay <= 59) Then
 monString = "02"
 dayString = CStr(JulianDay - 31)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 60) And (JulianDay <= 90) Then
 monString = "03"
 dayString = CStr(JulianDay - 59)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 91) And (JulianDay <= 120) Then
 monString = "04"
 dayString = CStr(JulianDay - 90)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 121) And (JulianDay <= 151) Then
 monString = "05"
 dayString = CStr(JulianDay - 120)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 152) And (JulianDay <= 181) Then
 monString = "06"
 dayString = CStr(JulianDay - 151)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 182) And (JulianDay <= 212) Then
 monString = "07"
 dayString = CStr(JulianDay - 181)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 213) And (JulianDay <= 243) Then
 monString = "08"
 dayString = CStr(JulianDay - 212)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 244) And (JulianDay <= 273) Then
 monString = "09"
 dayString = CStr(JulianDay - 243)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 274) And (JulianDay <= 304) Then
 monString = "10"
 dayString = CStr(JulianDay - 273)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 305) And (JulianDay <= 334) Then
 monString = "11"
 dayString = CStr(JulianDay - 304)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 335) And (JulianDay <= 365) Then
 monString = "12"
 dayString = CStr(JulianDay - 334)
 dayString = string(2 - Len(dayString), "0") & dayString
 End If
Else
'Leap year
 If (JulianDay >= 1) And (JulianDay <= 31) Then
 monString = "01"
 dayString = CStr(JulianDay)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 32) And (JulianDay <= 60) Then
 monString = "02"
 dayString = CStr(JulianDay - 31)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 61) And (JulianDay <= 91) Then
 monString = "03"
 dayString = CStr(JulianDay - 60)

70

 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 92) And (JulianDay <= 121) Then
 monString = "04"
 dayString = CStr(JulianDay - 91)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 122) And (JulianDay <= 152) Then
 monString = "05"
 dayString = CStr(JulianDay - 121)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 153) And (JulianDay <= 182) Then
 monString = "06"
 dayString = CStr(JulianDay - 152)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 183) And (JulianDay <= 213) Then
 monString = "07"
 dayString = CStr(JulianDay - 182)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 214) And (JulianDay <= 244) Then
 monString = "08"
 dayString = CStr(JulianDay - 213)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 245) And (JulianDay <= 274) Then
 monString = "09"
 dayString = CStr(JulianDay - 244)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 275) And (JulianDay <= 305) Then
 monString = "10"
 dayString = CStr(JulianDay - 274)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 306) And (JulianDay <= 335) Then
 monString = "11"
 dayString = CStr(JulianDay - 305)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 336) And (JulianDay <= 366) Then
 monString = "12"
 dayString = CStr(JulianDay - 335)
 dayString = string(2 - Len(dayString), "0") & dayString
 End If
End If

End Function

.

71

Appendix F. Data Management Program – MSA_QC_MST.gle

 This appendix appears in its original form, without editorial change.

72

The MSA_QC_MST.gle program creates a 24-h midnight to midnight Mountain Standard Time
(MST) data displayof various Meteorological Sensor Array (MSA) data time series plots.

! PROGRAM: MSA_QC_MST.gle
! AUTHOR: O'Brien/Harrison
! Last Rev: 05-10-2014, sh
!
! PURPOSE: This program creates a 24 hour midnight to midnight MST data display of various plots for MSA Data

!subroutine to find max value
sub dmaxy ds$
 local crmax = datayvalue(ds$,1)
 for i = 2 to ndata(ds$)
 crmax = max(crmax, datayvalue(ds$,i))
 next i
 !print "crmax: " crmax
 return crmax
end sub

size 63 60
set font ssb
set hei 0.7
set alabelscale 1.0
set atitlescale 1.0
set titlescale 1.0

!Find YYYYMMDD and XX:YY from file and then set up
! file date string and tower position for title info

dataFile$ = "C:\MSA\MSA_POST-PoC_Exercise\MSA_Data\MSA_24hr_GLE_Data.txt"
fopen dataFile$ f1 read
fgetline f1 line$
fclose f1
year$ = seg$(line$, 2, 5)
mon$ = seg$(line$, 6, 7)
day$ = seg$(line$, 8, 9)
position$ = seg$(line$, 23, 27)

monValue = val(mon$)
xcomp$ = seg$(position$, 2, 2)
ycomp$ = seg$(position$, 5, 5)
xcompValue = val(xcomp$)
ycompValue = val(ycomp$)

if (xcompValue = 1) then
 if (ycompValue = 1) then
 tower$ = "1 "
 else if (ycompValue = 2) then
 tower$ = "2 "
 else
 tower$ = "5 "
 end if
else if (xcompValue = 2) then
 tower$ = "3 "
else
 tower$ = "4 "
end if

if (monValue = 1) then
 mon$ = "Jan "
else if (monValue = 2) then
 mon$ = "Feb "
else if (monValue = 3) then
 mon$ = "Mar "

73

else if (monValue = 4) then
 mon$ = "Apr "
else if (monValue = 5) then
 mon$ = "May "
else if (monValue = 6) then
 mon$ = "Jun "
else if (monValue = 7) then
 mon$ = "Jul "
else if (monValue = 8) then
 mon$ = "Aug "
else if (monValue = 9) then
 mon$ = "Sep "
else if (monValue = 10) then
 mon$ = "Oct "
else if (monValue = 11) then
 mon$ = "Nov "
else if (monValue = 12) then
 mon$ = "Dec "
end if

!Output file date and tower position header
set hei 1.0
set color blue
amove 8 57.5
write "Data Date: " mon$ day$ ", " year$ " MST"
amove 42 57.5
write "Tower " tower$ "(" position$ ")"
set color black
set hei 0.7

!Wind speed plot at top of page

amove 1 30
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 20
YAxisMax30 = 30
YAxisMin = 0
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "Wind Speed (1 - Minute Average)"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "Wind Speed (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c7 d2=c2,c16
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
end graph

!Trying to resize yaxis depending on data
maxyd1 = dmaxy(d1)

74

maxyd2 = dmaxy(d2)
if (maxyd1 <= 10) and (maxyd2 <= 10) then
 !begin graph
 !yaxis min 0 max 10 dticks 2 dsubticks 1
 !end graph
end if

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title wind speed
amove 5 40.8
set color green
write "Wind Speed (m/s) \; Tower " tower$ "(" position$ ")"
set color black

!Wind direction plot at top of page

amove 1 44
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 360
YAxisMin = 0
YAxisMajorTick = 90
YAxisSubTick = 30

begin graph
 size 20 12
 nobox
 !title "Wind Direction (1 - Minute Average)"
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .2
 yticks length .2
 ysubticks length 0.3
 ylabels on
 y2labels off
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ytitle "Wind Direction (degrees)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c8 d2=c2,c17
 d1 marker circle msize 0.3 color brown
 d2 marker circle msize 0.3 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title wind direction
amove 3.5 54.8
set color green
write "Wind Direction: (degrees) \; Tower " tower$ "(" position$ ")"
set color black

75

!U plot at bottom of page

amove 1 16
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 15
YAxisMax30 = 30
YAxisMin = -10
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "2m U Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "U (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c9 d2=c2,c18
 let d3 = d1*0.0
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
 d3 lstyle 1 lwidth .1 color deeppink
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title of U Component
amove 5 26.8
set color green
write "U Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

!V plot at bottom of page

amove 22 16
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 10
YAxisMax30 = 30
YAxisMin = -10
YAxisMajorTick = 5

76

YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "2m V Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "V (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c10 d2=c2,c19
 let d3 = d1*0.0
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
 d3 lstyle 1 lwidth .1 color deeppink
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title for V Component
amove 25.5 26.8
set color green
write "V Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

!W plot at bottom of page

amove 43 16
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1
YAxisMax30 = 30
YAxisMin = -1
YAxisMajorTick = .5
YAxisSubTick = .1

begin graph
 size 20 12
 nobox
 !title "2m W Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick

77

 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "W (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c11 d2=c2,c20
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title for W Component
amove 46.5 26.8
set color green
write "W Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

!Errors plot at bottom of page

amove 1 2
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1200
YAxisMax30 = 30
YAxisMin = 0
YAxisMajorTick = 300
YAxisSubTick = 100

begin graph
 size 20 12
 nobox
 !title "Errors"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 ylabels on
 ytitle "# of Errors"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c14 d2=c2,c23
 d1 lstyle 1 lwidth .05 color brown
 d2 lstyle 1 lwidth .05 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 color brown
 separator
 text "10m" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title for Errors

78

amove 4 12.8
set color green
write "Number of Sonic Errors \; Tower " tower$ "(" position$ ")"
set color black

!Dew Point plot at bottom of page

amove 22 2
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 50
YAxisMin = -20
!YAxisMajorTick = 10
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length .2
 !yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 yaxis dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature (^{o}C)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c6 d3=c2,c4
 let d4 = (d3*0.06112*EXP((17.67*d1)/(d1+243.5)))
 let d5 = ((243.5*LOG(d4/6.112))/(17.67-LOG(d4/6.112)))
 let d6 = d1*0.0
 d5 lstyle 1 lwidth .04 color green
 d6 lstyle 1 lwidth .1 color deeppink
end graph

!Output Graph Title for DewPoint
amove 27 12.8
set color green
write "DewPoint (^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

!Battery Voltage and Panel Temp plot at bottom of page

amove 43 2
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 15
YAxisMax30 = 30
YAxisMin = 10
YAxisMajorTick = 1
YAxisSubTick = 0

begin graph
 size 20 12
 nobox
 !title "Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3

79

 !ysubticks length 0.3
 y2ticks length 0.5
 y2subticks length 0.5
 !yplaces 10 11 12 13 14 15 16
 !ynames "10" "11" "12" "13" "14" "15" "16"
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min 0 max 60 dticks 12 dsubticks 6
 ylabels on
 y2labels on
 ytitle "Battery Voltage (V)"
 xtitle "MST (decimal hours)" dist 0.5
 y2title "Panel Temp (^{o}C)"
 data dataFile$ d1=c2,c24 d2=c2,c25
 let d2 = (d2/12)+10
 d1 lstyle 1 lwidth .05 color brown
 d2 lstyle 1 lwidth .05 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "Battery" lstyle 1 color brown
 separator
 text "Panel-T" lstyle 1 color blue
end key
set hei 0.7

!Output Graph Title for Battery Voltage and Panel Temp
amove 45 12.8
set color green
write "Battery(V) \; Panel-T(^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

!Temperature gradient plot at top of page

amove 22 30
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = .9
YAxisMin = -0.4
YAxisMajorTick = 0.1
YAxisSubTick = 0.05

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.2
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis dticks YAxisMajorTick dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature Gradient (^{o}C/m)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c6 d2=c2,c15
 let d3 = (d2-d1)/8
 let d4 = d1*0.0
 d3 lstyle 1 color purple
 d4 lstyle 1 lwidth .1 color deeppink
end graph

!Output graph title for temperature gradient
amove 25 40.8

80

set color green
write "Temp Gradient (^{o}C/m) \; Tower " tower$ "(" position$ ")"
set color black

!Temperature plot at top of page

amove 22 44
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 45
YAxisMin = 10
YAxisMajorTick = 5
YAxisSubTick = 0

begin graph
 size 20 12
 nobox
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length .2
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 !yaxis dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature (^{o}C)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c6 d2=c2,c15
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2 m" lstyle 1 color brown
 separator
 text "10 m" lstyle 1 color blue
 end key
set hei 0.7

!Output Graph Title for Temperature
amove 26 54.8
set color green
write "Temperature (^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

!Solar irradiance plot at top of page

amove 43 30
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1400
YAxisMin = 0
YAxisMajorTick = 200
YAxisSubTick = 100

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick

81

 xticks length .2
 yticks length .2
 ysubticks length 0.3
 ylabels on
 y2labels off
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 ytitle "Solar Irradiance (W/m^2)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c2,c5
 d1 lstyle 1 lwidth .04 color brown
end graph

!Output graph title for solar irradiance
amove 46 40.8
set color green
write "Solar Irradiance (W/m^2) \; Tower " tower$ "(" position$ ")"
set color black

!Relative humidity and station air pressure plot at top of page

amove 43 44
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 100
YAxisMin = 0
YAxisMajorTick = 10
YAxisSubTick = 5.0

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .5
 y2ticks length .5
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 ytitle "Relative Humidity (percent)"
 xtitle "MST (decimal hours)" dist 0.5
 y2axis min 850 max 880 dticks 10 dsubticks 0
 y2title "Station Air Pressure (mb)"
 y2labels on
 data dataFile$ d1=c2,c4 d2=c2,c3
 let d2 = (d2-850)*3.3333
 d1 lstyle 1 lwidth .04 color brown
 d2 lstyle 1 lwidth .04 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "Humidity" lstyle 1 color brown
 separator
 text "Pressure" lstyle 1 color blue
end key
set hei 0.7

!Output graph title for relative humidity
amove 45 54.8
set color green
write "RH (%) \; Pressure (mb) \; Tower " tower$ "(" position$ ")"
set color black

82

INTENTIONALLY LEFT BLANK.

83

Appendix G. Data Management Program – Met_ASCII_UTC.vbs

 This appendix appears in its original form, without editorial change.

84

The Met_ASCII_UTC.vbs program reads Meteorological Sensor Array (MSA) merged hourly
files, and formats them into MET American Standard Code for Information Interchange (ASCII)
to be read into the MET V&V software.

' PROGRAM: Met_ASCII_UTC.vbs
' AUTHOR: Sandra Harrison
' Last Rev: 140417, gv/sh
'
' PURPOSE: This program reads MSA merged hourly files and formats them into Met ASCII to be read into the VVA Software.
' There will be 25 hourly output files (6am to 6am) and each file will include calculated data for each tower.

Dim metAsciiFileString
Dim sourceFileString
Dim FSO
Dim sourceFile
Dim metAsciiFile
Dim currentLineNumber

Const ForReading = 1, ForWriting = 2, ForAppending = 8

set FSO = CreateObject("Scripting.FileSystemObject")
set WshShell = CreateObject("WScript.Shell")

rootPath = "L:\"
dataSourcePath = "MSA_POST-PoC_Exercise\MSA_Data\"
archivePath = "MSA_SH\MET_ASCII\ArchiveData\"
applicationsPath = "MSA_SH\MET_ASCII\"

Set args = WScript.Arguments
YMD = args.Item(0)

'YMD = InputBox("Enter YEAR/MONTH/DAY of Data Files in Format (YYMMDD):", "UTC")
If YMD="" Then
 WScript.Quit
End If

yearString = Left(YMD, 2)
monString = Mid(YMD, 3, 2)
dayString = Mid(YMD, 5, 2)
YMDOrig = YMD

Dim towerString
towerString = Array("0101", "0102", "0202", "0302", "0103")
utcString = "05"

For k = 0 to 24 '***Hours***

metAsciiFileOpen = 0

For i = 0 To 4 '***Towers***

 Continue = True
 sourceFileString = rootPath & dataSourcePath & YMD & "merged\20" & yearString & monString & dayString & "_" & utcString & "00" &
"_" & towerString(i) & "_merged.txt"

 If FSO.FileExists(sourceFileString) Then
 set sourceFile = FSO.OpenTextFile(sourceFileString, ForReading, True) '***Open hourly file of tower for reading***
 'MsgBox("Data File: " & sourceFileString)
 Else
 x = MsgBox("File Not Found: " & sourceFileString, 0, "WARNING")
 'WScript.Quit
 Continue = False
 End If

85

If Continue Then '***If Data Exists Then Read Data***
 currentLineNumber = 0
 Total_Pressure = 0
 Total_RH = 0
 Total_Temp2m = 0
 Total_WS = 0
 Total_U = 0
 Total_V = 0
 Press15mincnt = 0
 RH15mincnt = 0
 Temp15mincnt = 0
 WS15mincnt = 0
 U15mincnt = 0
 V15mincnt = 0

 UTCCol = 1
 PressureCol = 3
 RHCol = 4
 Temp2mCol = 6
 WSCol = 16
 UCol = 18
 VCol = 19

 Do Until sourceFile.AtEndOfStream
 CurCol = 0
 LogicalCol = 0
 currentLineNumber = currentLineNumber + 1

 currentLine = sourceFile.ReadLine
 currentLineArray = Split(currentLine, " ")

 If currentLineNumber = 1 Then
 julianDayString = currentLineArray(1)
 Latitude = currentLineArray(5)
 'Wscript.Echo "Latitude: " & currentLineArray(5)
 Longitude = currentLineArray(6)
 'Wscript.Echo "Longitude: " & currentLineArray(6)
 Elevation = CDbl(currentLineArray(7))
 'Wscript.Echo "Elevation: " & currentLineArray(7)
 Else
 For j = 0 to 20 '***Read each line of file accounting for extra spaces***
 Do While currentLineArray(CurCol) = "" OR currentLineArray(CurCol) = Space(1)
 CurCol = CurCol + 1
 Loop

 LogicalCol = LogicalCol + 1
 'Wscript.Echo "LogicalCol:" & LogicalCol & " CurCol:" & CurCol & " J:" & j

 If UTCCol = LogicalCol Then
 UTC = CDbl(currentLineArray(CurCol))
 'Wscript.Echo "UTC:" & currentLineArray(CurCol)
 End If
 If PressureCol = LogicalCol Then
 Pressure = CDbl(currentLineArray(CurCol))
 If CDbl(Pressure) <= -99 Then
 Pressure = -9999
 End If
 'Wscript.Echo "Pressure: " & currentLineArray(CurCol)
 End If
 If RHCol = LogicalCol Then
 RH = currentLineArray(CurCol)
 If CDbl(RH) <= -99 Then
 RH = -9999
 End If
 'Wscript.Echo "RH: " & currentLineArray(CurCol)
 End If
 If Temp2mCol = LogicalCol Then
 Temp2m = currentLineArray(CurCol)
 If CDbl(Temp2m) <= -99 Then

86

 Temp2m = -9999
 End If
 'Wscript.Echo "Temp2m: " & currentLineArray(CurCol)
 End If
 If WSCol = LogicalCol Then
 WindSpeed = currentLineArray(CurCol)
 If CDbl(windSpeed) <= -99 Then
 windSpeed = -9999
 End If
 'Wscript.Echo "WindSpeed: " & currentLineArray(CurCol)
 End If
 If UCol = LogicalCol Then
 UComp = currentLineArray(CurCol)
 If CDbl(UComp) <= -99 Then
 UComp = -9999
 End If
 'Wscript.Echo "UComp: " & currentLineArray(CurCol)
 End If
 If VCol = LogicalCol Then
 VComp = currentLineArray(CurCol)
 If CDbl(VComp) <= -99 Then
 VComp = -9999
 End If
 'Wscript.Echo "VComp: " & currentLineArray(CurCol)
 End If
 CurCol = CurCol + 1
 Next

 If currentLineNumber = 2 Then
 UTC_last15min = UTC + .75
 End If

 If CDbl(UTC) >= CDbl(UTC_last15min) Then '***Sum Totals***
 If Pressure <> -9999 Then
 Total_Pressure = Total_Pressure + CDbl(Pressure)
 Press15mincnt = Press15mincnt + 1
 'Wscript.Echo "Pressure: " & Pressure
 'Wscript.Echo "Total_Pressure: " & Total_Pressure
 'Wscript.Echo "fifteenMinCount: " & fifteenMinCount
 End If

 If RH <> -9999 Then
 Total_RH = Total_RH + CDbl(RH)
 RH15mincnt = RH15mincnt + 1
 'Wscript.Echo "RH: " & RH
 'Wscript.Echo "Total_RH " & Total_RH
 End If

 If Temp2m <> -9999 Then
 Total_Temp2m = Total_Temp2m + CDbl(Temp2m)
 Temp15mincnt = Temp15mincnt + 1
 End If

 If WindSpeed <> -9999 Then
 Total_WS = Total_WS + CDbl(WindSpeed)
 WS15mincnt = WS15mincnt + 1
 End If

 If UComp <> -9999 Then
 Total_U = Total_U + CDbl(UComp)
 U15mincnt = U15mincnt + 1
 End If

 If VComp <> -9999 Then
 Total_V = Total_V + CDbl(VComp)
 V15mincnt = V15mincnt + 1
 End If
 End If
 End If

87

 Loop

 If Total_Pressure = 0 OR Press15mincnt < 14 Then '***Calculate Averages for last 15 mins of hour***
 Total_Pressure = -9999
 Else
 Total_Pressure = CDbl(Total_Pressure) / Press15mincnt
 GetAltimeter AltPress, Total_Pressure, Elevation
 AltPressPa = AltPress * 100 '***Conversion mb to pa***
 End If

 If Total_RH <> 0 Then
 If RH15mincnt < 14 Then
 Total_RH = 0
 Else
 Total_RH = Total_RH / RH15mincnt
 End If
 End If

 If Total_Temp2m = 0 OR Temp15mincnt < 14 Then
 Total_Temp2mK = 0
 Else
 Total_Temp2m = Total_Temp2m / Temp15mincnt
 Total_Temp2mK = Total_Temp2m + 273.15 '***Conversion Celsius to Kelvin***
 End If

 If Total_Temp2mK <> 0 AND Total_RH <> 0 Then
 GetDewPoint DewPoint, Total_Temp2mK, Total_RH
 End If

 If Total_WS <> 0 Then
 If WS15mincnt < 14 Then
 Total_WS = 0
 Else
 Total_WS = Total_WS / WS15mincnt
 End If
 End If

 If Total_U <> 0 Then
 If U15mincnt < 14 Then
 Total_U = 0
 Else
 Total_U = Total_U / U15mincnt
 End If
 End If

 If Total_V <> 0 Then
 If V15mincnt < 14 Then
 Total_V = 0
 Else
 Total_V = Total_V / V15mincnt
 End If
 End If

 metAsciiUtcString = CStr(CInt(utcString)+1) '***save file to top of hour value***
 metAsciiUtcString = string(2 - Len(metAsciiUtcString), "0") & metAsciiUtcString
 If metAsciiUtcString = "24" Then
 metAsciiUtcString = "00"
 If i = 0 Then
 julianDayString = CStr(CInt(julianDayString)+1)
 return = YMDFromJulian(yearString, monString, dayString, Int(julianDayString))
 YMD = yearString & monString & dayString
 'MsgBox("Next day: " & yearString & monString & dayString)
 End If
 End If

 If Not FSO.FolderExists(rootPath & archivePath & YMDOrig) Then
 FSO.CreateFolder(rootPath & archivePath & YMDOrig)

88

 End If

 '***Open MetAsciiFile to print calculated data for tower # for hour #***
 metAsciiFileString = rootPath & archivePath & YMDOrig & "\hr" & CStr(k) & "_" & metAsciiUtcString & "Z.txt"
 If metAsciiFileOpen = 0 Then
 set metAsciiFile = FSO.OpenTextFile(metAsciiFileString, ForWriting, True)
 metAsciiFileOpen = 1
 'MsgBox("MetAscii File: " & metAsciiFileString)
 Else
 metAsciiFile.close
 set metAsciiFile = FSO.OpenTextFile(metAsciiFileString, ForAppending, True)
 'MsgBox("MetAscii File: " & metAsciiFileString)
 End If

 '***Write Data to File***
 If Total_Temp2mK <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 11 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Total_Temp2mK, 6,
, , vbFalse))
 End If

 If Total_Temp2mK <> 0 AND Total_RH <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 17 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(DewPoint, 6, , ,
vbFalse))
 End If

 If Total_Pressure <> -9999 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 2 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(AltPressPa, 6, , ,
vbFalse))
 End If

 If Total_WS <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 32 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Total_WS, 6, , ,
vbFalse))
 End If

 If Total_U <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 33 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Total_U, 6, , ,
vbFalse))
 End If

 If Total_V <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 34 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Total_V, 6, , ,
vbFalse))
 End If

 If Total_RH <> 0 Then
 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" &
metAsciiUtcString & "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 52 " &
FormatNumber(Total_Pressure, 4, , , vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Total_RH, 6, , ,
vbFalse))
 End If

 metAsciiFile.WriteLine("ADPSFC " & "MSA" & towerString(i) & " 20" & yearString & monString & dayString & "_" & metAsciiUtcString
& "0000 " & Latitude & " " & Longitude & " " & FormatNumber(Elevation, 2, , , vbFalse) & " 7 " & FormatNumber(Total_Pressure, 4, , ,
vbFalse) & " " & FormatNumber(Elevation, 2, , , vbFalse) & " NA " & FormatNumber(Elevation, 2, , , vbFalse))

 sourceFile.close

89

End If

Next

utcString = CStr(CInt(utcString)+1) '***set name of next source file to read from***
utcString = string(2 - Len(utcString), "0") & utcString
If utcString = "24" Then
 utcString = "00"
End If

metAsciiFile.close

Next

Function GetDewPoint(ByRef DewPoint, ByVal TempK, ByVal RH)

If TempK > 150 Then
 Temp = TempK - 273.15
Else
 Temp = TempK
End If
X = 1.0 - 0.01 * RH

DPD = (14.55 + 0.114 * Temp) * X + ((2.5 + 0.007 * Temp) * X) ^ 3 + (15.9 + 0.117 * Temp) * X ^ 14
DWPTC = Temp - DPD
DewPoint = DWPTC + 273.15

End Function

Function GetAltimeter(ByRef PressAlt, ByVal Press, ByVal Elev)

EXPONT = 0.190284
EXPINV = 1.0/EXPONT
LAPSE = 0.0065
TSTD = 288.15
PSTD = 1013.25
CONSTANT = PSTD ^ EXPONT * LAPSE / TSTD

PressAlt = ((Press - 0.3) ^ EXPONT + CONSTANT * Elev) ^ EXPINV

End Function

Function YMDFromJulian(ByRef yearString, ByRef monString, ByRef dayString, ByVal JulianDay)

yearRatio = CInt(yearString) / 4.0
yearRemainder = yearRatio - Int(yearRatio)

If (yearRemainder > 0.1) Then
'Non-leap year
 If (JulianDay >= 1) And (JulianDay <= 31) Then
 monString = "01"
 dayString = CStr(JulianDay)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 32) And (JulianDay <= 59) Then
 monString = "02"
 dayString = CStr(JulianDay - 31)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 60) And (JulianDay <= 90) Then
 monString = "03"
 dayString = CStr(JulianDay - 59)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 91) And (JulianDay <= 120) Then
 monString = "04"

90

 dayString = CStr(JulianDay - 90)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 121) And (JulianDay <= 151) Then
 monString = "05"
 dayString = CStr(JulianDay - 120)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 152) And (JulianDay <= 181) Then
 monString = "06"
 dayString = CStr(JulianDay - 151)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 182) And (JulianDay <= 212) Then
 monString = "07"
 dayString = CStr(JulianDay - 181)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 213) And (JulianDay <= 243) Then
 monString = "08"
 dayString = CStr(JulianDay - 212)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 244) And (JulianDay <= 273) Then
 monString = "09"
 dayString = CStr(JulianDay - 243)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 274) And (JulianDay <= 304) Then
 monString = "10"
 dayString = CStr(JulianDay - 273)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 305) And (JulianDay <= 334) Then
 monString = "11"
 dayString = CStr(JulianDay - 304)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 335) And (JulianDay <= 365) Then
 monString = "12"
 dayString = CStr(JulianDay - 334)
 dayString = string(2 - Len(dayString), "0") & dayString
 End If
Else
'Leap year
 If (JulianDay >= 1) And (JulianDay <= 31) Then
 monString = "01"
 dayString = CStr(JulianDay)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 32) And (JulianDay <= 60) Then
 monString = "02"
 dayString = CStr(JulianDay - 31)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 61) And (JulianDay <= 91) Then
 monString = "03"
 dayString = CStr(JulianDay - 60)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 92) And (JulianDay <= 121) Then
 monString = "04"
 dayString = CStr(JulianDay - 91)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 122) And (JulianDay <= 152) Then
 monString = "05"
 dayString = CStr(JulianDay - 121)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 153) And (JulianDay <= 182) Then
 monString = "06"
 dayString = CStr(JulianDay - 152)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 183) And (JulianDay <= 213) Then
 monString = "07"
 dayString = CStr(JulianDay - 182)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 214) And (JulianDay <= 244) Then
 monString = "08"
 dayString = CStr(JulianDay - 213)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 245) And (JulianDay <= 274) Then

91

 monString = "09"
 dayString = CStr(JulianDay - 244)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 275) And (JulianDay <= 305) Then
 monString = "10"
 dayString = CStr(JulianDay - 274)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 306) And (JulianDay <= 335) Then
 monString = "11"
 dayString = CStr(JulianDay - 305)
 dayString = string(2 - Len(dayString), "0") & dayString
 ElseIf (JulianDay >= 336) And (JulianDay <= 366) Then
 monString = "12"
 dayString = CStr(JulianDay - 335)
 dayString = string(2 - Len(dayString), "0") & dayString
 End If
End If

End Function

92

INTENTIONALLY LEFT BLANK..

93

Appendix H. Data Management Program – MET_ASCII_UTC.wbt

 This appendix appears in its original form, without editorial change.

94

The MET_ASCII_UTC.wbt program prompts the user for the date and calls MET-
ASCII_UTC.vbs, using a WinBatch graphical user interface (GUI).

; PROGRAM: MET_ASCII_UTC.wbt
; AUTHOR: Sandra Harrison
; Last Rev: 140606, sh
; PURPOSE: This program prompts the user for the Date and calls
; MET_ASCII_UTC.vbs using a WINBATCH GUI

YMD = AskLine("UTC", "Enter YEAR/MONTH/DAY of Data Files in Format
(YYMMDD)", "", 0)

Run ("L:\MSA_SH\MET_ASCII\MET_ASCII_UTC.vbs", YMD)

ErrorMode(@OFF)
WinActivate ("~WARNING")
If !WinExist ("~WARNING")
 Message(YMD, "MSA data files reformatted to MET ASCII.")
Else
 While (WinExist ("~WARNING"))
 TimeDelay(5)
 EndWhile
 Message(YMD, "MET ASCII files may be incomplete due to
WARNINGS.")
ErrorMode(@CANCEL)

95

List of Symbols, Abbreviations, and Acronyms

24/7 24 h/day–7 days/week

3DWF Three-Dimensional Wind Field

AC alternating current

AGL above ground level

Ah ampere-hour

API Application Program Interface

ARL US Army Research Laboratory

ASCII American Standard Code for Information Interchange

BASC Board on Atmospheric Sciences and Climate

DAS data acquisition system

DC direct current

DTC Developmental Testbed Center

GIS Geographic Information System

GLE Graphic Layout Engine

GPS global positioning system

GRIB Gridded Binary

GUI graphical user interface

LAPS Local Analysis and Prediction System

MADIS Meteorological Assimilation Data Ingest System

MET Model Evaluation Tools

MPPT maximum power point tracking

MSA Meteorological Sensor Array

MST Mountain Standard Time

NCEP National Centers for Environmental Prediction

96

NOAA National Oceanic and Atmospheric Administration

NRC National Research Council

NTP Network Time Protocol

PV Photovoltaic

QA Quality Assurance

R&D Research and Development

RTMA Real-Time Mesoscale Analysis

USB Universal Serial Bus

V&V validation and verification

whr watt-hours

WRE-N Weather Running Estimate-Nowcast

WRF Weather Research and Forecasting

WSMR White Sands Missile Range

97

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
(PDF) US ARMY RSRCH LAB

 RDRL CIO LL
 IMAL HRA MAIL & RECORDS

MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 6 US ARMY RSRCH LAB
 (CD) ATTN RDRL CIE M
 BLDG 1622
 WSMR NM 88002
 R DUMAIS
 T FOLEY
 T JAMESON
 D KNAPP
 J RABY
 J SMITH

 4 US ARMY RSRCH LAB
 (CD) ATTN RDRL CIE D
 BLDG 1622
 WSMR NM 88002

 R BRICE
 S D’ARCY
 S HARRISON
 J SWANSON

 10 US ARMY RSRCH LAB
 (5 CD, G VAUCHER
 5 HC) ATTN RDRL CIE D
 BLDG 1622
 WSMR NM 88002

 1 US ARMY RSRCH LAB
 (CD) P CLARK
 ATTN RDRL CIE
 2800 POWDER MILL RD
 ADELPHI MD 20783-1138

 1 US ARMY RSRCH LAB
 (CD) S O BRIEN
 ATTN RDRL CIE D
 BLDG 1622
 WSMR NM 88002

 1 DR J MCLAY
 (CD) NAVAL RESEARCH LABORATORY
 7 GRACE HOPPER AVE STOP 2
 MONTEREY CA 93943

 1 R CRAIG DAF CIVILIAN
 (CD) HQ AFWA 2WXG 16WS/WXN
 101 NELSON DRIVE
 OFFUTT AFB NE 68113-1023

 1 ARMY JOINT SUPPORT TEAM
 (CD) SFAE IEW&S DCGS A
 ATTN G BARNES
 238 HARSTON ST BLDG 90060
 HURLBURT FIELD FL 32544

 1 J STALEY
 (CD) ARMY WEATHER PROPONENT
 OFFICE
 INTEGRATION
 SYNCHRONIZATION AND
 ANALYSIS (CDID)
 US ARMY INTELLIGENCE
 CENTER OF EXCELLENCE
 550 CIBEQUE ST BLDG 61730
 FT HUACHUCA AZ 85613

98

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	1. Background
	1.1 The Challenge
	1.2 Meteorological Sensor Array (MSA) Overview
	1.2.1 MSA Vision
	1.2.2 MSA Program Phases

	2. Sensor Calibration
	2.1 Dynamic Sensor Calibration
	2.2 Thermodynamic Sensor Calibration

	3. Tower Design Description
	4. Tower Data Acquisition Systems (DAS)
	4.1 Thermodynamic (Logger) DAS
	4.2 Dynamic (Sonic) DAS

	5. Tower Power Design
	6. Communications
	7. Data Processing
	8. Automated Quality Assurance Protocol
	8.1 QA Limits
	8.1.1 Battery Voltage
	8.1.2 Panel Temperature
	8.1.3 Internal Quality Control
	8.1.4 Climatological Average Values
	8.1.5 Air Temperature (2- and 10-m AGL)
	8.1.6 Relative Humidity (2-m AGL)
	8.1.7 Air Pressure (Surface)
	8.1.8 Incoming Solar Radiation (2-m AGL)

	8.2 Redundant Data
	8.2.1 Air Temperature (2- and 10-m AGL)
	8.2.2 Relative Humidity (2-m AGL)
	8.2.3 Air Pressure (Surface)
	8.2.4 Solar Radiation

	8.3 Spatial Consistency of Data

	9. Data Applications
	9.1 V&V Tools and Preliminary Results
	9.1.1 NCAR MET Point-Stat
	9.1.2 GIS

	10. Summary and Final Comments
	11. References
	Appendix A. Meteorological Sensor Array (MSA)-Phase I, CR23X Micrologger Program0F0F(
	Appendix B. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Logger Program 1F1F(
	Appendix C. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Sonic Program 2F2F(
	Appendix D. Meteorological Sensor Array (MSA)-Phase I, Pre-Data-Merge Averaging Program 3F3F(
	Appendix E. Data Management Program – Meteorological Sensor Array (MSA)_Mountain Standard Time (MST)_Automate.vbs4F4F(
	Appendix F. Data Management Program – MSA_QC_MST.gleF5F(
	Appendix G. Data Management Program – Met_ASCII_UTC.vbs6F6F(
	Appendix H. Data Management Program – MET_ASCII_UTC.wbt 7F7F(
	List of Symbols, Abbreviations, and Acronyms

